2026届黑龙江省齐齐哈尔市龙江二中高二上数学期末经典试题含解析_第1页
2026届黑龙江省齐齐哈尔市龙江二中高二上数学期末经典试题含解析_第2页
2026届黑龙江省齐齐哈尔市龙江二中高二上数学期末经典试题含解析_第3页
2026届黑龙江省齐齐哈尔市龙江二中高二上数学期末经典试题含解析_第4页
2026届黑龙江省齐齐哈尔市龙江二中高二上数学期末经典试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届黑龙江省齐齐哈尔市龙江二中高二上数学期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列中,,,若,则()A.2 B.3C.4 D.52.已知函数在区间上是增函数,则实数的取值范围是()A. B.C. D.3.已知三棱锥,点分别为的中点,且,用表示,则等于()A. B.C. D.4.已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为()A. B.C. D.5.下列命题中的假命题是()A.,B.存在四边相等的四边形不是正方形C.“存在实数,使”的否定是“不存在实数,使”D.若且,则,至少有一个大于6.已知数列为等差数列,且成等比数列,则的前6项的和为A.15 B.C.6 D.37.已知函数,在定义域内任取一点,则使的概率是()A. B.C. D.8.已知三维数组,,且,则实数()A.-2 B.-9C. D.29.对数的创始人约翰·奈皮尔(JohnNapier,1550-1617)是苏格兰数学家.直到18世纪,瑞士数学家欧拉发现了指数与对数的互逆关系,人们才认识到指数与对数之间的天然关系对数发现前夕,随着科技的发展,天文学家做了很多的观察,需要进行很多计算,特别是大数的连乘,需要花费很长时间.基于这种需求,1594年,奈皮尔运用了独创的方法构造出对数方法.现在随着科学技术的需要,一些幂的值用数位表示,譬如,所以的数位为4.那么的数位是()(注)A.6 B.7C.606 D.60710.命题:,否定是()A., B.,C., D.,11.(5分)已知集合A={x|−2<x<4},集合B={x|(x−6)(x+1)<0},则A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|−2<x<−1} D.{x|−1<x<4}12.已知数列满足,其前项和为,,.若数列的前项和为,则满足成立的的最小值为()A.10 B.11C.12 D.13二、填空题:本题共4小题,每小题5分,共20分。13.某校学生在研究折纸实验中发现,当对折后纸张达到一定的厚度时,便不能继续对折了.在理想情况下,对折次数与纸的长边和厚度有关系:.现有一张长边为30cm,厚度为0.05cm的矩形纸,根据以上信息,当对折完4次时,的最小值为________;该矩形纸最多能对折________次.(参考数值:,)14.曲线在点处的切线方程为_________15.设为等差数列的前n项和,若,,则______16.将集合且中所有的元素从小到大排列得到的数列记为,则___________(填数值).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某市共有居民60万人,为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照,,……分成9组,制成了如图所示的频率分布直方图(1)求直方图中的a值,并估计该市居民月均用水量不少于3吨的人数(单位:人);(2)估计该市居民月均用水量的众数和中位数18.(12分)已知函数(1)讨论的单调性:(2)若对恒成立,求的取值范围19.(12分)设椭圆的左、右焦点分别为,.点满足.(1)求椭圆的离心率;(2)设直线与椭圆相交于,两点,若直线与圆相交于,两点,且,求椭圆的方程.20.(12分)某校高二年级全体学生参加了一次数学测试,学校利用简单随机抽样的方法从甲班、乙班各抽取五名同学的数学测试成绩(单位:分)得到如下茎叶图,若甲、乙两班数据的中位数相等且平均数也相等.(1)求出茎叶图中m和n的值:(2)若从86分以上(不含86分)的同学中随机抽出两名,求此两人都来自甲班的概率.21.(12分)已知函数(1)当时,求函数的单调区间;(2)设,,求证:;(3)当时,恒成立,求的取值范围22.(10分)已知数列的首项为,且满足.(1)求证:数列为等比数列;(2)设,记数列的前项和为,求,并证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由已知得数列是以2为首项,以2为公比的等比数列,求出,再利用等比数列求和可得答案.【详解】∵,∴,所以,数列是以2为首项,以2为公比的等比数列,则,∴,∴,则,解得.故选:C.2、D【解析】由在上恒成立,再转化为求函数的取值范围可得【详解】由已知,在上是增函数,则在上恒成立,即,,当时,,所以故选:D3、D【解析】连接,利用,化简即可得到答案.【详解】连接,如下图.故选:D.4、A【解析】根据双曲线的定义及条件,表示出,结合余弦定理可得答案.【详解】因为,由双曲线的定义可得,所以,;因为,由余弦定理可得,整理可得,所以,即.故选:A【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立间的等量关系是求解的关键.5、C【解析】利用简易逻辑的知识逐一判断即可.【详解】,故A正确;菱形的四边相等,但不一定是正方形,故B正确;“存在实数,使”的否定是“对任意的实数都有”,故C错误;假设且,则,与矛盾,故D正确;故选:C6、C【解析】利用成等比数列,得到方程2a1+5d=2,将其整体代入{an}前6项的和公式中即可求出结果【详解】∵数列为等差数列,且成等比数列,∴,1,成等差数列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{an}前6项的和为2a1+5d)=故选C【点睛】本题考查等差数列前n项和求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用7、A【解析】解不等式,根据与长度有关的几何概型即可求解.【详解】由题意得,即,由几何概型得,在定义域内任取一点,使的概率是.故选:A.8、D【解析】由空间向量的数量积运算即可求解【详解】∵,,,,,,且,∴,解得故选:D9、D【解析】根据已知条件,设,则,求出t的范围,即可判断其数位.【详解】设,则,则,则,,的数位是607.故选:D.10、D【解析】根据给定条件利用全称量词命题的否定是存在量词命题直接写出作答.【详解】命题:,是全称量词命题,其否定是存在量词命题,所以命题:,的否定是:,.故选:D11、D【解析】由(x−6)(x+1)<0,得−1<x<6,从而有B={x|−1<x<6},所以A∩B={x|−1<x<4},故选D12、A【解析】根据题意和对数的运算公式可证得为以2为首项,2为公比的等比数列,求出,进而得到,利用裂项相消法求得,再解不等式即可.【详解】由,又,所以数列是以2为首项,2为公比的等比数列,故,则,所以,由,得,即,有,又,所以,即n的最小值为10.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、①.64②.6【解析】利用即可求解,利用和换底公式进行求解.【详解】令,则,则,即,即当对折完4次时,最小值为;由题意,得,,则,所以该矩形纸最多能对折6次.故答案为:64,6.14、【解析】求导,求出切线斜率,用点斜式写出直线方程,化简即可.【详解】,曲线在点处的切线方程为,即故答案为:15、36【解析】利用等差数列前n项和的性质进行求解即可.【详解】因为为等差数列的前n项和,所以也成等差数列,即成等差数列,所以,故答案为:16、992【解析】列举数列的前几项,观察特征,可得出.详解】由题意得观察规律可得中,以为被减数的项共有个,因为,所以是中的第5项,所以.故答案为:992.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)a0.3,72000人;(2)众数2.25;中位数2.04.【解析】(1)根据所有小长方形面积和为1即可求得参数,结合题意求得用水量不少于3吨对应的频率,再求频数即可;(2)根据频率分布直方图直接写出众数,根据中位数的求法,结合频率的计算,即可容易求得结果.【小问1详解】由频率分布直方图,可知:,解得;月均用水量不少于3吨的人数为:(人)【小问2详解】由图可估计众数为2.25;设中位数为x吨,因为前5组的频率之和0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组频率之和0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5,由,可得,故居民月均用水量的中位数为2.04吨.18、(1)答案不唯一,具体见解析(2)【解析】(1)求导得,在分,两种情况讨论求解即可;(2)根据题意将问题转化为对恒成立,进而构造函数,求解函数最值即可.【小问1详解】解:函数的定义域为,当时,令,得,令,得;当时,令,得,令,得综上,当时,在上单调递减,在上单调递增;当时,在上单调递增,在上单调递减【小问2详解】解:由(1)知,函数在上单调递增,则,所以对恒成立等价于对恒成立设函数,则,设,则,则在上单调递减,所以,则,所以在上单调递减,所以;故,即的取值范围是19、(1);(2)【解析】(1)由及两点间距离公式可建立等式,消去b,即可求解出,主要两个根的的要舍去;(2)联立直线和椭圆的方程,利用弦长公式求得,再利用几何关系求得,代入,可解得c,从而得到椭圆的方程.【详解】(1)设,,因为,所以,整理得,得(舍),或,所以;(2)由(1)知,,可得椭圆方程为,直线的方程为,A,B两点的坐标满足方程组为,消去y并整理,得,解得:,,得方程组的解和,不妨设:,,所以,于是,圆心到直线的距离为,因为,所以,整理得:,得(舍),或,所以椭圆方程为:.【点睛】关键点点睛:本题考查求椭圆的离心率解题关键是找到关于a,b,c的等量关系,第二问的关键是联立直线与椭圆方程求出交点坐标,利用距离公式建立等量关系,求出c是求出椭圆方程的关键.20、(1),(2)【解析】(1)根据茎叶图得甲班中位数为,由此能求出,根据由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,从86分以上(不含86分)的同学中随机抽出两名,用列举法写出基本事件总数,再利用古典概型的概率计算公式即可求解.【小问1详解】根据茎叶图可知1班中位数为86,则,又∵,且故【小问2详解】由(1)可知,甲班86分以上有2人,乙班86以上有2人设甲班86分以上2人为,,乙班86分以上2人为,,从中任取两名同学共有,,,,,共有6组基本事件,且每组出现都是等可能的记:“从86分以上(不含86分)的同学中随机抽出两名,两人都来自甲班”为事件M,事件M包括:共1个基本事件,由古典概型的计算概率的公式知∴所以两人都来自甲班的概率为21、(1)函数单调递增区间为(0,1),单调递减区间为(1,+∞)(2)证明见解析(3)[1,+∞)【解析】(1)对函数求导后,由导数的正负可求出函数的单调区间,(2)由(1)可得,令,则可得,然后利用累加法可证得结论,(3)由,故,然后分和讨论的最大值与比较可得结果【小问1详解】当时,(),则,由,解得;由,解得,因此函数单调递增区间为(0,1),单调递减区间为(1,+∞)【小问2详解】由(1)知,当k=1时,,故令,则,即,所以【小问3详解】由,故当时,因为,所以,因此恒成立,且的根至多一个,故在(0,1]上单调递增,所以恒成立当时,令,解得当时,,则单调递增;当时,,则单调递减;于是,与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论