2026年深圳中考数学图形的轴对称试卷(附答案可下载)_第1页
2026年深圳中考数学图形的轴对称试卷(附答案可下载)_第2页
2026年深圳中考数学图形的轴对称试卷(附答案可下载)_第3页
2026年深圳中考数学图形的轴对称试卷(附答案可下载)_第4页
2026年深圳中考数学图形的轴对称试卷(附答案可下载)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026年深圳中考数学图形的轴对称试卷(附答案可下载)考试时间:90分钟满分:100分注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上;2.所有答案均需写在答题卡对应位置,写在试卷上无效;3.考试结束后,将试卷和答题卡一并交回。试卷说明:本卷专为2026年深圳中考数学图形的轴对称专项突破设计,精准覆盖轴对称的定义、性质、线段垂直平分线定理、角平分线定理、常见轴对称图形的判定与性质,以及轴对称与三角形、四边形的综合应用等核心考点。难度对标深圳中考,分为基础题(50%)、中档题(35%)、拔高题(15%),侧重几何推理能力、空间观念与解题技巧提炼,助力考生夯实专项基础、突破解题难点,冲刺中考高分。答案配套详细解析与思路指引,便于自查自纠、查漏补缺。一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)下列关于图形轴对称的说法,正确的是()

A.轴对称图形只有一条对称轴

B.成轴对称的两个图形对应点连线垂直于对称轴

C.成轴对称的两个图形形状相同但大小不同

D.轴对称图形的对称轴是直线,不能是线段或射线

下列图形中,不是轴对称图形的是()

A.等边三角形B.平行四边形C.矩形D.正方形

如图,在△ABC中,AB=AC,AD是BC边上的中线,若∠B=50°,则∠BAD的度数为()

A.30°B.40°C.50°D.60°

如图,直线l是线段AB的垂直平分线,点P在l上,若PA=5,则PB的长为()

A.3B.4C.5D.无法确定

在平面直角坐标系中,点P(2,-3)关于x轴对称的点的坐标为()

A.(2,3)B.(-2,-3)C.(-2,3)D.(3,2)

如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,若DE=3,则DF的长为()

A.2B.3C.4D.5

等腰三角形的两边长分别为4和9,则该三角形的周长为()

A.17B.22C.17或22D.无法确定

如图,在菱形ABCD中,对角线AC、BD相交于点O,下列说法错误的是()

A.AC⊥BDB.AB=BCC.AC平分∠BADD.AO=BO

在平面直角坐标系中,点A(1,2)关于直线y=x轴对称的点的坐标为()

A.(2,1)B.(1,-2)C.(-1,2)D.(-2,-1)

如图,△ABC是轴对称图形,对称轴为直线l,若∠A=70°,∠C=50°,则∠ABD的度数为()

A.30°B.40°C.50°D.60°

二、填空题(本大题共5小题,每小题3分,共15分)在平面直角坐标系中,点M(-3,4)关于y轴对称的点的坐标为________.等腰三角形的一个内角为80°,则它的底角为________°.如图,在△ABC中,AB=AC,AB的垂直平分线交AC于点D,若AD=5,DC=3,则BC的长为________.正方形的对称轴有________条.如图,∠AOB=30°,OC平分∠AOB,PD⊥OA于点D,PE⊥OB于点E,若PD=2,则OP的长为________.三、解答题(本大题共7小题,共55分.解答应写出文字说明、证明过程或演算步骤)(6分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-1,-2)、B(-3,1)、C(0,3),画出△ABC关于x轴对称的△A'B'C',并写出其三个顶点的坐标.

(6分)如图,在△ABC中,AB=AC,D是BC的中点,求证:AD⊥BC.

(8分)如图,在△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,且AB=AC,求证:BD=CD.

(8分)如图,直线l是线段AB的垂直平分线,交AB于点O,点C、D在l上,连接AC、BC、AD、BD,求证:四边形ACBD是菱形.

(9分)如图,在等腰△ABC中,AB=AC,∠A=120°,AB的垂直平分线交BC于点D,交AB于点E,求证:BD=1/2CD.

(9分)如图,某小区有一块等腰三角形绿地ABC,AB=AC,底边BC=12米,高AD=8米,现要在绿地内修一条与BC平行的小路EF,使EF到AB的距离与到AC的距离相等,求小路EF的长度.

(9分)如图,在矩形ABCD中,AB=6,AD=8,点E是BC上一点,连接AE,将△ABE沿AE折叠,使点B落在点B'处,且B'在矩形内部,连接B'C、B'D,若B'C=B'D.

(1)求证:AE垂直平分BB';

(2)求CE的长;

(3)求△AB'E的面积.

参考答案及图形的轴对称专项解析一、选择题(每小题3分,共30分)1-5:BBBCA6-10:BBDAA解析:

1.A项轴对称图形可有多条对称轴(如正方形4条);C项成轴对称的图形大小形状均相同;D项对称轴只能是直线,线段、射线不能作为对称轴;B项符合轴对称性质,选B。

2.平行四边形沿任意直线折叠,两边均不能完全重合,不是轴对称图形;其余三项均为轴对称图形,选B。

3.AB=AC,△ABC为等腰三角形,AD是中线,由三线合一得AD平分∠BAC,∠BAC=180°-2×50°=80°,∠BAD=40°,选B。

4.线段垂直平分线上的点到线段两端距离相等,P在l上,故PB=PA=5,选C。

5.关于x轴对称的点横坐标不变,纵坐标互为相反数,P(2,-3)对称点为(2,3),选A。

6.角平分线上的点到角两边距离相等,AD平分∠BAC,DE⊥AB、DF⊥AC,故DF=DE=3,选B。

7.4不能作为腰(4+4<9),腰为9,周长=9+9+4=22,选B。

8.菱形对角线互相垂直平分且平分内角,四条边相等,但AO与BO不一定相等(仅正方形中相等),选D。

9.关于直线y=x轴对称的点横纵坐标互换,A(1,2)对称点为(2,1),选A。

10.轴对称图形中∠ABC=∠A=70°,BD为对称轴上的线段,∠ABD=∠CBD=35°?修正:∠B=180°-70°-50°=60°,对称轴平分∠B,∠ABD=30°,选A。

二、填空题(每小题3分,共15分)11.(3,4)12.50或8013.514.415.4解析:

11.关于y轴对称的点纵坐标不变,横坐标互为相反数,(-3,4)对称点为(3,4)。

12.80°可为顶角或底角,为顶角时底角=(180°-80°)/2=50°,故底角为50°或80°。

13.连接BD,垂直平分线性质得BD=AD=5,△BDC中BD=5、DC=3,由勾股定理得BC=5。

14.正方形有4条对称轴(两条对角线、两组对边中垂线)。

15.OC平分∠AOB,PD=PE=2,∠AOP=15°,在Rt△OPD中,OP=2PD=4。

三、解答题(共55分)25.解:(6分)

关于x轴对称的点横坐标不变,纵坐标互为相反数。

A(-1,-2)→A'(-1,2);

B(-3,1)→B'(-3,-1);

C(0,3)→C'(0,-3)。

(画图略:根据坐标在平面直角坐标系中描点,连接成△A'B'C')

答:△A'B'C'的顶点坐标为A'(-1,2)、B'(-3,-1)、C'(0,-3)。

证明:(6分)

∵D是BC的中点,∴BD=CD,

在△ABD和△ACD中,

AB=AC(已知),

BD=CD(已证),

AD=AD(公共边),

∴△ABD≌△ACD(SSS),

∴∠ADB=∠ADC,

又∵∠ADB+∠ADC=180°,

∴∠ADB=∠ADC=90°,即AD⊥BC。

解:(8分)

∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,

∴DE=DF(角平分线性质),∠DEB=∠DFC=90°,

∵AB=AC,∴∠B=∠C(等腰三角形底角相等),

在△DEB和△DFC中,

∠B=∠C,

∠DEB=∠DFC,

DE=DF,

∴△DEB≌△DFC(AAS),

∴BD=CD。

证明:(8分)

∵直线l是AB的垂直平分线,

∴AC=BC,AD=BD(垂直平分线性质),

∴点A、B均在以C为圆心、AC为半径的圆上,

同理,点A、B均在以D为圆心、AD为半径的圆上,

∴AC=BC=AD=BD,

∴四边形ACBD是菱形(四条边相等的四边形是菱形)。

证明:(9分)

连接AD,

∵AB=AC,∠A=120°,

∴∠B=∠C=(180°-120°)/2=30°,

∵DE是AB的垂直平分线,

∴AD=BD(垂直平分线性质),

∴∠BAD=∠B=30°,

∴∠DAC=∠BAC-∠BAD=120°-30°=90°,

在Rt△ADC中,∠C=30°,

∴AD=1/2CD(直角三角形中30°角对的直角边是斜边的一半),

又∵AD=BD,∴BD=1/2CD。

解:(9分)

连接AD,交EF于点G,

∵AB=AC,AD是高,∴AD平分∠BAC,

∵EF到AB、AC距离相等,∴EF⊥AD,且AG是△AEF的高,

∵EF∥BC,∴△AEF∽△ABC,

AD=8,设AG=h,则DG=8-h,

由相似比得AG/AD=EF/BC,即h/8=EF/12,

又∵EF到AB、AC距离相等,∴AG=DG=4,

∴4/8=EF/12,解得EF=6。

答:小路EF的长度为6米。

解:(9分)

(1)证明:由折叠性质得AB=AB',BE=B'E,

∴点A、E均在BB'的垂直平分线上,

∴AE垂直平分BB';

(2)设CE=x,则BE=8-x,B'E=8-x,

∵B'C=B'D,四边形ABCD是矩形,∴对角线AC、BD互相平分,

设AC、BD交于点O,则O是BB'的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论