2026届西藏自治区拉萨市北京实验中学数学高一上期末综合测试模拟试题含解析_第1页
2026届西藏自治区拉萨市北京实验中学数学高一上期末综合测试模拟试题含解析_第2页
2026届西藏自治区拉萨市北京实验中学数学高一上期末综合测试模拟试题含解析_第3页
2026届西藏自治区拉萨市北京实验中学数学高一上期末综合测试模拟试题含解析_第4页
2026届西藏自治区拉萨市北京实验中学数学高一上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届西藏自治区拉萨市北京实验中学数学高一上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若函数在上有三个零点,则的最大值为A. B.C. D.2.已知函数,则函数的最小正周期为A. B.C. D.3.关于的不等式的解集为,且,则()A.3 B.C.2 D.4.已知两个非零向量,满足,则下面结论正确的是A. B.C. D.5.若集合,则下列选项正确的是()A. B.C. D.6.下列函数图象中,不能用二分法求零点的是()A. B.C. D.7.“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知点位于第二象限,那么角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限9.函数的部分图像为()A. B.C. D.10.某几何体的三视图如图所示,则该几何体的体积为()A.16 B.15C.18 D.17二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边经过点,且,则t的值为______12.如图,在正方体中,、分别是、上靠近点的三等分点,则异面直线与所成角的大小是______.13.如图,扇环ABCD中,弧,弧,,则扇环ABCD的面积__________14.已知集合,则______15.已知,,且,则的最小值为________.16.的化简结果为____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(,且)(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)设,解不等式18.已知的图象上相邻两对称轴的距离为.(1)若,求的递增区间;(2)若时,若最大值与最小值之和为5,求的值.19.2020年春节前后,一场突如其来的新冠肺炎疫情在武汉出现并很快地传染开来(已有证据表明2019年10月、11月国外已经存在新冠肺炎病毒),对人类生命形成巨大危害.在中共中央、国务院强有力的组织领导下,全国人民万众一心抗击、防控新冠肺炎,疫情早在3月底已经得到了非常好的控制(累计病亡人数3869人),然而国外因国家体制、思想观念的不同,防控不力,新冠肺炎疫情越来越严重.疫情期间造成医用防护用品短缺,某厂家生产医用防护用品需投入年固定成本为100万元,每生产万件,需另投入流动成本为万元,在年产量不足19万件时,(万元),在年产量大于或等于19万件时,(万元),每件产品售价为25元,通过市场分析,生产的医用防护用品当年能全部售完(1)写出年利润(万元)关于年产量(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,某厂家在这一商品的生产中所获利润最大?最大利润是多少?20.已知偶函数.(1)求实数的值;(2)经过研究可知,函数在区间上单调递减,求满足条件的实数a的取值范围.21.已知函数(1)判断函数f(x)的单调性,并用定义给出证明;(2)解不等式:;(3)若关于x方程只有一个实根,求实数m的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】因为在上有三个零点,所以在上有三个不同的解,即函数与的图象在上有三个不同的交点,画出函数图像,结合图象进而求得答案【详解】因为在上有三个零点,所以在上有三个不同的解,即函数与的图象在上有三个不同的交点,结合函数图象可知,当直线经过点时,取得最小值,从而取得最大值,且.【点睛】本题考查函数的零点问题,解题的关键是得出函数与的图象在上有三个不同的交点,属于一般题2、C【解析】去绝对值符号,写出函数的解析式,再判断函数的周期性【详解】,其中,所以函数的最小正周期,选择C【点睛】本题考查三角函数最小正周期的判断方法,需要对三角函数的解析式整理后,根据函数性质求得3、A【解析】根据一元二次不等式与解集之间的关系可得、,结合计算即可.【详解】由不等式的解集为,得,不等式对应的一元二次方程为,方程的解为,由韦达定理,得,,因为,所以,即,整理,得.故选:A4、B【解析】,所以,故选B考点:平面向量的垂直5、C【解析】利用元素与集合,集合与集合的关系判断.【详解】因为集合是奇数集,所以,,,A,故选:C6、B【解析】利用二分法求函数零点所满足条件可得出合适的选项.【详解】观察图象与轴的交点,若交点附近的函数图象连续,且在交点两侧的函数值符号相异,则可用二分法求零点,故B不能用二分法求零点故选:B.7、A【解析】利用或,结合充分条件与必要条件的定义可得结果.详解】根据题意,由于或,因此可以推出,反之,不成立,因此“”是“”的充分而不必要条件,故选A.【点睛】判断充分条件与必要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.8、C【解析】通过点所在象限,判断三角函数的符号,推出角所在的象限.【详解】点位于第二象限,可得,,可得,,角所在的象限是第三象限故选C.【点睛】本题考查三角函数的符号的判断,是基础题.第一象限所有三角函数值均为正,第二象限正弦为正,其它为负,第三象限正切为正,其它为负,第四象限余弦为正,其它为负.9、D【解析】先判断奇偶性排除C,再利用排除B,求导判断单调性可排除A.【详解】因为,所以为偶函数,排除C;因为,排除B;当时,,,当时,,所以函数在区间上单调递减,排除A.故选:D10、B【解析】由三视图还原的几何体如图所示,结合长方体的体积公式计算即可.【详解】由图可知,该几何体是在一个长方体的右上角挖去一个小长方体,如图,故该几何体的体积为故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、##0.5625【解析】根据诱导公式得sinα=-,再由任意角三角函数定义列方程求解即可.【详解】因为,所以sinα=-.又角α的终边过点P(3,-4t),故sinα==-,故,且解得t=(或舍)故答案为:.12、【解析】连接,可得出,证明出四边形为平行四边形,可得,可得出异面直线与所成角为或其补角,分析的形状,即可得出的大小,即可得出答案.【详解】连接、、,,,在正方体中,,,,所以,四边形为平行四边形,,所以,异面直线与所成的角为.易知为等边三角形,.故答案为:.【点睛】本题考查异面直线所成角的计算,一般利用平移直线法,选择合适的三角形求解,考查计算能力,属于中等题.13、3【解析】根据弧长公式求出,,再由根据扇形的面积公式求解即可.【详解】设,因为弧,弧,,所以,,所以,,又扇形的面积为,扇形的面积为,所以扇环ABCD的面积故答案为:314、【解析】∵∴,故答案为15、12【解析】,展开后利用基本不等式可求【详解】∵,,且,∴,当且仅当,即,时取等号,故的最小值为12故答案为:1216、18【解析】由指数幂的运算与对数运算法则,即可求出结果.【详解】因为.故答案为18【点睛】本题主要考查指数幂运算以及对数的运算,熟记运算法则即可,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)奇函数,理由见解析;(3).【解析】(1)由对数真数大于零可构造不等式组求得结果;(2)根据奇偶性定义判断即可得到结论;(3)将函数化为,由对数函数性质可知,解不等式求得结果.【详解】(1)由题意得:,解得:,定义域为.(2),为定义在上的奇函数.(3)当时,,由得:,解得:,的解集为.18、(1)增区间是[kπ-,kπ+],k∈Z(2)【解析】首先根据已知条件,求出周期,进而求出的值,确定出函数解析式,由正弦函数的递增区间,,即可求出的递增区间由确定出的函数解析式,根据的范围求出这个角的范围,利用正弦函数的图象与性质即可求出函数的最大值,即可得到的值解析:已知由,则T=π=,∴w=2∴(1)令-+2kπ≤2x+≤+2kπ则-+kπ≤x≤+kπ故f(x)的增区间是[kπ-,kπ+],k∈Z(2)当x∈[0,]时,≤2x+≤∴sin(2x+)∈[-,1]∴∴点睛:这是一道求三角函数递增区间以及利用函数在某区间最大值求得参数的题目,主要考查了两角和的正弦函数公式,正弦函数的单调性,以及正弦函数的定义域和值域,解题的关键是熟练掌握正弦函数的性质,属于中档题19、(1);(2)当生产的医用防护服年产量为20万件时,厂家所获利润最大,最大利润为180万元【解析】(1)根据题意,分、两种情况可写出答案;(2)利用二次函数和基本不等式的知识,分别求出、时的最大值,然后作比较可得答案.【详解】(1)因为每件商品售价为25元,则万件商品销售收入为万元,依题意得,当时,,当时,,所以;(2)当时,,此时,当时,取得最大值万元,当时,万元,此时,当且仅当,即时,取得最大值180万元,因为,所以当生产的医用防护服年产量为20万件时,厂家所获利润最大,最大利润为180万元20、(1)0(2)【解析】(1)首先求出函数的定义域,再根据偶函数的性质,利用特殊值求出参数的值,再代入检验即可;(2)根据偶函数的性质将函数不等式转化为自变量的不等式,解得即可.【小问1详解】解:由,有,可得函数的定义域为,,由函数为偶函数,有,解得.当时,,由,可知此时函数为偶函数,符合题意,由上知实数m的值为0;【小问2详解】解:由函数为偶函数,且函数在区间上单调递减,可得函数在区间上单调递增,若,有解得且,故实数a的取值范围为.21、(1)f(x)在R上单调递增;证明见解析;(2);(3){-3}(1,+∞).【解析】(1)利用函数单调性的定义及指数函数的性质即得;(2)由题可得,然后利用函数单调性即得;(3)由题可得方程有且只有一个正数根,分m=1,m≠1讨论,利用二次函数的性质可得.【小问1详解】f(x)在R上单调递增;任取x1,x2∈R,且x1<x2,则∵∴,∴即∴函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论