辽宁省辽源市鼎高级中学2026届数学高一上期末联考模拟试题含解析_第1页
辽宁省辽源市鼎高级中学2026届数学高一上期末联考模拟试题含解析_第2页
辽宁省辽源市鼎高级中学2026届数学高一上期末联考模拟试题含解析_第3页
辽宁省辽源市鼎高级中学2026届数学高一上期末联考模拟试题含解析_第4页
辽宁省辽源市鼎高级中学2026届数学高一上期末联考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省辽源市鼎高级中学2026届数学高一上期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设是定义在实数集上的函数,且,若当时,,则有()A. B.C. D.2.已知直线l经过两点,则直线l的斜率是()A. B.C.3 D.3.已知函数(其中)的图象如下图所示,则的图象是()A. B.C. D.4.若正实数,满足,则的最小值为()A. B.C. D.5.设集合M={a|x∈R,x2+ax+1>0},集合N={a|x∈R,(a-3)x+1=0},若命题p:a∈M,命题q:a∈N,那么命题p是命题q的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件6.函数,其部分图象如图所示,则()A. B.C. D.7.若直线与互相平行,则()A.4 B.C. D.8.若α=-2,则α的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限9.设集合,,则()A B.C. D.10.下列函数是偶函数的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.,若,则________.12.已知幂函数在上为减函数,则实数_______13.已知幂函数过点,若,则________14.我国采用的“密位制”是6000密位制,即将一个圆周分为6000等份,每一个等份是一个密位,那么120密位等于______rad15.设函数且是定义域为的奇函数;(1)若,判断的单调性并求不等式的解集;(2)若,且,求在上的最小值16.已知,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求的单调递增区间.(2)求在区间上的最大、最小值,并求出取得最值时的值.18.已知(1)设,求t的最大值与最小值;(2)求的值域19.如图,公路围成的是一块顶角为的角形耕地,其中,在该块土地中处有一小型建筑,经测量,它到公路的距离分别为,现要过点修建一条直线公路,将三条公路围成的区域建成一个工业园.(1)以为坐标原点建立适当的平面直角坐标系,并求出点的坐标;(2)三条公路围成的工业园区的面积恰为,求公路所在直线方程.20.已知函数,其中.(1)若是周期为的偶函数,求及的值.(2)若在上是增函数,求的最大值.(3)当时,将函数的图象向右平移个单位,再向上平移1个单位,得到函数的图象,若在上至少含有10个零点,求b的最小值.21.某校对100名高一学生的某次数学测试成绩进行统计,分成五组,得到如图所示频率分布直方图.(1)求图中a值;(2)估计该校高一学生这次数学成绩的众数和平均数;(3)估计该校高一学生这次数学成绩的75%分位数.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由f(2-x)=f(x)可知函数f(x)的图象关于x=1对称,所以,,又当x≥1时,f(x)=lnx单调递增,所以,故选B2、B【解析】直接由斜率公式计算可得.【详解】由题意可得直线l的斜率.故选:B.3、A【解析】根据二次函数图象上特殊点的正负性,结合指数型函数的性质进行判断即可.【详解】解:由图象可知:,因,所以由可得:,由可得:,由可得:,因此有,所以函数是减函数,,所以选项A符合,故选:A4、B【解析】由基本不等式有,令,将已知等式转化为关于的一元二次不等式,解不等式即可得答案.【详解】解:由题意,正实数满足,则,令,可得,即,解得,或(舍去),所以当且仅当时,取得最小值2,故选:B.5、A【解析】由题意,对于集合M,△=a2-4<0,解得-2<a<2;对于集合N,a≠3若-2<a<2,则a≠3;反之,不成立.命题p是命题q的充分不必要条件.故选A6、C【解析】利用图象求出函数的解析式,即可求得的值.【详解】由图可知,,函数的最小正周期为,则,所以,,由图可得,因为函数在附近单调递增,故,则,,故,所以,,因此,.故选:C.7、B【解析】根据直线平行,即可求解.【详解】因为直线与互相平行,所以,得当时,两直线重合,不符合题意;当时,符合题意故选:B.8、C【解析】根据角的弧度制与角度制之间的转化关系可得选项.【详解】因为1rad≈57.30°,所以-2rad≈-114.60°,故α的终边在第三象限故选:C.9、C【解析】利用集合的交集运算求解.【详解】因为集合,,所以,故选:C10、D【解析】利用偶函数的性质对每个选项判断得出结果【详解】A选项:函数定义域为,且,,故函数既不是奇函数也不是偶函数,A选项错误B选项:函数定义域为,且,,故函数既不是奇函数也不是偶函数C选项:函数定义域为,,故函数为奇函数D选项:函数定义域为,,故函数是偶函数故选D【点睛】本题考查函数奇偶性的定义,在证明函数奇偶性时需注意函数的定义域;还需掌握:奇函数加减奇函数为奇函数;偶函数加减偶函数为偶函数;奇函数加减偶函数为非奇非偶函数;奇函数乘以奇函数为偶函数;奇函数乘以偶函数为奇函数;偶函数乘以偶函数为偶函数二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分和两种情况解方程,由此可得出的值.【详解】当时,由,解得;当时,由,解得(舍去).综上所述,.故答案为:.12、-1【解析】利用幂函数的定义列出方程求出m的值,将m的值代入函数解析式检验函数的单调性【详解】∵y=(m2﹣5m﹣5)x2m+1是幂函数∴m2﹣5m﹣5=1解得m=6或m=﹣1当m=6时,y=(m2﹣5m﹣5)x2m+1=x13不满足在(0,+∞)上为减函数当m=﹣1时,y=(m2﹣5m﹣5)x2m+1=x﹣1满足在(0,+∞)上为减函数故答案为m=﹣1【点睛】本题考查幂函数的定义:形如y=xα(其中α为常数)、考查幂函数的单调性与幂指数的正负有关13、##【解析】先由已知条件求出的值,再由可求出的值【详解】因幂函数过点,所以,得,所以,因为,所以,得,故答案为:14、##【解析】根据已知定义,结合弧度制的定义进行求解即可.【详解】设120密位等于,所以有,故答案为:15、(1)是增函数,解集是(2)【解析】(1)根据函数为奇函数,求得,得到,由,求得,得到是增函数,把不等式转化为,结合单调性,即可求解;(2)由,求得,得到,得出,令,结合指数函数的性质和换元法,即可求解.【小问1详解】解:因为函数且是定义域为的奇函数,可得,即,可得,所以,即,由,可得且且,解得,所以是增函数,又由,可得,所以,解得,所以不等式的解集是【小问2详解】解:由函数,因为,即且,解得,所以,由,令,则由(1)得在上是增函数,故,则在单调递增,所以函数的最小值为,即在上最小值为.16、【解析】将未知角化为已知角,结合三角恒等变换公式化简即可.【详解】解:因为,所以.故答案为:.【点睛】三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或时,当时【解析】分析:(1)先利用辅助角公式化简函数f(x),再利用复合函数的单调性性质求的单调递增区间.(2)利用不等式的性质和三角函数的图像和性质求在区间上的最大、最小值,并求出取得最值时的值.详解:(1),由得,∴的单调递增区间为(2)当时,当或,即或时,当即时点睛:(1)本题主要考查三角函数的单调性和区间上的最值,意在考查学生对这些基础知识的掌握水平和数形结合的思想方法.(2)对于复合函数的问题自然是利用复合函数的性质解答,求复合函数的最值,一般从复合函数的定义域入手,结合三角函数的图像一步一步地推出函数的最值.18、(1),;(2)[3,4].【解析】(1)利用对数函数的单调性即得;(2)换元后结合二次函数的性质可得函数在上单调递增,即求.【小问1详解】因为函数在区间[2,4]上是单调递增的,所以当时,,当时,【小问2详解】令,则,由(1)得,因为函数在上是单调增函数,所以当,即时,;当,即时,,故的值域为.19、(1);(2).【解析】(1)以为坐标原点,所在直线为轴,过点且垂直于的直线为轴,建立平面直角坐标系.根据条件求出直线的方程,设出点坐标,代点到直线的距离公式即可求出所求;(2)由(1)及题意设出直线的方程后,即可求得点的横坐标,与点的纵坐标,由求得后,即可求解.【详解】(1)以为坐标原点,所在直线为轴,过点且垂直于的直线为轴,建立如图所示的平面直角坐标系由题意可设点,且直线的斜率为,并经过点,故直线的方程为:,又因点到的距离为,所以,解得或(舍去)所以点坐标为.(2)由题意可知直线的斜率一定存在,故设其直线方程为:,与直线的方程:,联立后解得:,对直线方程:,令,得,所以,解得,所以直线方程为:,即:.【点睛】本题以直线方程的相关知识为背景,旨在考查学生分析和解决问题的能力,属于中档题.20、(1),,;(2);(3).【解析】(1)由题知,,进而求解即可得答案;(2)由题知函数在上是增函数,故,进而解不等式即可得答案.(3)由题知,进而根据题意得方程在上至少含有10个零点,进而得,再解不等式即可得答案.【详解】解:(1)由题知,因为是周期为的偶函数,所以,,解得:,,所以,.(2)因为,所以,因为函数在上是增函数,所以函数在上是增函数,所以,解得,又因为,故.所以的最大值为.(3)当时,,所以,当时,,又因为函数在上至少含有10个零点,所以方程在上至少含有10个零点,所以,解得故b最小值为.【点睛】本题考查三角函数图像平移变换,正弦型函数的性质,考查运算求解能力,化归转化思想,是中档题.本题解题的关键件在于利用整体换元的思想,将为题转化为利用函数的图像性质求解.21、(1)(2)众数为,平均数为(3)【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论