版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长郡中学2026届高一数学第一学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个扇形的弧长为6,面积为6,则这个扇形的圆心角是()A.1 B.2C.3 D.42.已知扇形OAB的周长为12,圆心角大小为,则该扇形的面积是()cm.A.2 B.3C.6 D.93.形如的函数因其图像类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数有最小值,则“囧函数”与函数的图像交点个数为()A.1 B.2C.4 D.64.若函数f(x)=2x+3x+a在区间(0,1)A.(-∞,-5)C.(0,5) D.(1,+5.某人围一个面积为32m2的矩形院子,一面靠旧墙,其它三面墙要新建(其平面示意图如下),墙高3m,新墙的造价为1000元/m2,则当A.9 B.8C.16 D.646.已知则的值为()A. B.2C.7 D.57.若,,则下列结论正确的是()A. B.C. D.8.如图一铜钱的直径为毫米,穿径(即铜钱内的正方形小孔边长)为毫米,现向该铜钱内随机地投入一粒米(米的大小忽略不计),则该粒米未落在铜钱的正方形小孔内的概率为A. B.C. D.9.如图是一个几何体的三视图,则此几何体的直观图是.A. B.C. D.10.已知,,是三个不同的平面,是一条直线,则下列说法正确的是()A.若,,,则B.若,,则C.若,,则D.若,,,则二、填空题:本大题共6小题,每小题5分,共30分。11.若命题p是命题“”的充分不必要条件,则p可以是___________.(写出满足题意的一个即可)12.在内不等式的解集为__________13.已知在上单调递增,则的范围是_____14.已知函数若存在实数使得函数的值域为,则实数的取值范围是__________15.函数在上的最小值是__________16.已知,,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,(1)若,求;(2)在①,②,③,这三个条件中任选一个作为已知条件,求实数的取值范围18.(1)求a值以及函数的定义域;(2)求函数在区间上的最小值;(3)求函数的单调递增区间19.已知函数的定义域是,设(1)求解析式及定义域;(2)若,求函数的最大值和最小值20.已知,且函数.(1)判断的奇偶性,并证明你的结论;(2)设,对任意,总存在,使得g(x1)=h(x2)成立,求实数c的取值范围.在以下①,②两个条件中,选择一个条件,将上面的题目补充完整,先求出a,b的值,并解答本题.①函数在定义域上为偶函数;②函数在上的值域为;21.等腰直角三角形中,,为的中点,正方形与三角形所在的平面互相垂直(Ⅰ)求证:平面;(Ⅱ)若,求点到平面的距离
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据扇形的弧长公式和扇形的面积公式,列出方程组,即可求解,得到答案.【详解】设扇形所在圆的半径为,由扇形的弧长为6,面积为6,可得,解得,即扇形的圆心角为.故选C.【点睛】本题主要考查了扇形的弧长公式,以及扇形的面积公式的应用,其中解答中熟练应用扇形的弧长公式和扇形的面积公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.2、D【解析】设扇形的半径和弧长,根据周长和圆心角解方程得到,再利用扇形面积公式计算即得结果.【详解】设扇形OAB的半径r,弧长l,则周长,圆心角为,解得,故扇形面积为.故选:D3、C【解析】令,根据函数有最小值,可得,由此可画出“囧函数”与函数在同一坐标系内的图象,由图象分析可得结果.【详解】令,则函数有最小值∵,∴当函数是增函数时,在上有最小值,∴当函数是减函数时,在上无最小值,∴.此时“囧函数”与函数在同一坐标系内的图象如图所示,由图象可知,它们的图象的交点个数为4.【点睛】本题考查对数函数的性质和函数图象的应用,考查学生画图能力和数形结合的思想运用,属中档题.4、B【解析】利用零点存在性定理知f(0)⋅f(1)<0,代入解不等式即可得解.【详解】函数f(x)=2x+3x+a由零点存在性定理知f(0)⋅f(1)<0,即1+a5+a<0所以实数a的取值范围是(-5,-1)故选:B5、B【解析】由题设总造价为y=3000(x+64x),应用基本不等式求最小值,并求出等号成立时的【详解】由题设,总造价y=1000×3×(x+2×32当且仅当x=8时等号成立,即x=8时总造价最低.故选:B.6、B【解析】先算,再求【详解】,故选:B7、C【解析】根据不等式的性质,逐一分析选项,即可得答案.【详解】对于A:因为,所以,因为,所以,故A错误;对于B:因为,所以,且,所以,故B错误;对于C:因为,所以,又,所以,故C正确;对于D:因为,,所以,所以,故D错误.故选:C8、B【解析】由题意结合几何概型公式可得:该粒米未落在铜钱的正方形小孔内的概率为:.本题选择B选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,通用公式:P(A)=.9、D【解析】由已知可得原几何体是一个圆锥和圆柱的组合体,上部分是一个圆锥,下部分是一个圆柱,而且圆锥和圆柱的底面积相等,故此几何体的直观图是:故选D10、A【解析】利用面面垂直的性质,线面的位置关系,面面的位置关系,结合几何模型即可判断.【详解】对于A,在平面内取一点P,在平面内过P分别作平面与,与的交线的垂线a,b,则由面面垂直的性质定理可得,又,∴,由线面垂直的判定定理可得,故A正确;对于B,若,,则与位置关系不确定,可能与平行、相交或在内,故B错误;对于C,若,,则与相交或平行,故C错误;对于D,如图平面,且,,,显然与不垂直,故D错误.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、,(答案不唯一)【解析】由充分条件和必要条件的定义求解即可【详解】因为当时,一定成立,而当时,可能,可能,所以是的充分不必要条件,故答案为:(答案不唯一)12、【解析】利用余弦函数的性质即可得到结果.【详解】∵,∴,根据余弦曲线可得,∴.故答案为:13、【解析】令,利用复合函数的单调性分论讨论函数的单调性,列出关于的不等式组,求解即可.【详解】令当时,由题意知在上单调递增且对任意的恒成立,则,无解;当时,由题意知在上单调递减且对任意的恒成立,则,解得.故答案为:【点睛】本题考查对数型复合函数的单调性,同增异减,求解时注意对数函数的定义域,属于基础题.14、【解析】当时,函数为减函数,且在区间左端点处有令,解得令,解得的值域为,当时,fx=x在,上单调递增,在上单调递减,从而当时,函数有最小值,即为函数在右端点的函数值为的值域为,则实数的取值范围是点睛:本题主要考查的是分段函数的应用.当时,函数为减函数,且在区间左端点处有,当时,在,上单调递增,在上单调递减,从而当时,函数有最小值,即为,函数在右端点的函数值为,结合图象即可求出答案15、【解析】在上单调递增最小值为16、【解析】利用两角差的正切公式可计算出的值.【详解】由两角差的正切公式得.故答案为:.【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)答案见解析【解析】(1)分别求出集合和集合,求并集即可;(2)选①,根据集合和集合的位置在数轴上确定端点的关系,列出不等式组即可求解,选②,先求出,再根据条件在数轴确定端点位置关系列出不等式组即可求解,选③,得到,根据数轴端点位置关系列出不等式组即可求解.【小问1详解】因为,所以,又因为,所以【小问2详解】若选①:则满足或,所以的取值范围为或若选②:所以或,则满足,所以的取值范围为若选③:由题意得,则满足所以的取值范围为18、(1),;(2);(3)﹒【解析】(1)由f(1)=-2解得a,由1+x>0且3-x>0解得定义域;(2)化简f(x)解析式,根据x范围求出真数部分范围,即可求其最值;(3)根据复合函数单调性判断方法“同增异减”即可﹒【小问1详解】,解得;故,由,解得:,故函数的定义域是;【小问2详解】由(1)得,令得,则原函数为,由于该函数在上单调递减,∴,因此,函数在区间上的最小值是;【小问3详解】由(1)得:,令的对称轴是,故在递增,在递减,∴在递增,在递减,故函数单调递增区间为19、(1)g(x)=22x-2x+2,定义域为[0,1](2)最大值为-3,最小值为-4【解析】(1)根据函数,得到f(2x)和f(x+2)的解析式求解;再根据f(x)=2x的定义域是[0,3],由求g(x)的定义域;(2)由(1)得g(x)=22x-2x+2,设2x=t,t∈[1,2],转化为二次函数求解.【小问1详解】解:因为函数,所以f(2x)=22x,f(x+2)=2x+2,所以g(x)=f(2x)-f(x+2)=22x-2x+2,∵f(x)=2x的定义域是[0,3],∴,解得0≤x≤1,∴g(x)的定义域为[0,1]【小问2详解】由(1)得g(x)=22x-2x+2,设2x=t,则t∈[1,2],∴g(t)=t2-4t=,∴g(t)在[1,2]上单调递减,∴g(t)max=g(1)=-3,g(t)min=g(2)=-4∴函数g(x)的最大值为-3,最小值为-420、(1)奇函数,证明见解析;(2).【解析】若选择①利用偶函数的性质求,若选择条件②,利用函数的单调性,求函数的值域,比较后得到值;(1)由①或②得,利用奇偶函数的定义判断;(2)根据条件转化为的值域是的值域的子集,求实数的取值范围.【详解】若选择①由,在上是偶函数,则,且,所以a=2,b=0;②当a>1时,在上单调递增,则有,解得a=2,b=0;由①或②得,(1)为奇函数证明:的定义域为R.因为,则为奇函数(2)当x>0时,,因为,当且仅当即x=1时等号成立,所以;当x<0时,因为为奇函数,所以;当x=0时,;所以的值域为[,],,,函数是单调递减函数,所以函数的值域是对任意的,总存在,使得g(x1)=h(x2)成立,,,得.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,,总有成立,故;(2)若,,有成立,故;(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022年9月国开电大行管专科《社会调查研究与方法》期末纸质考试试题及答案
- 户外环境中的紧急情况识别
- 劳资专管员考试试题及答案
- 饲草产品加工工岗前考核试卷及答案
- 新疆和田地区和田市辅警考试公安基础知识考试真题库及答案
- 四平市公务员遴选考试模拟试题及答案
- 医师考核口腔试题及答案
- 教育综合考前模拟卷(二)及答案
- 2025职业病危害及预防措施试题带答案
- 音乐学小组考试题及答案
- 2025年日语能力测试N4级真题模拟备考试卷
- DB62∕T 4203-2020 云杉属种质资源异地保存库营建技术规程
- 年终岁末的安全培训课件
- 中医康复面试题目及答案
- 《人工智能导论》高职人工智能通识课程全套教学课件
- 中华医学会麻醉学分会困难气道管理指南
- 南京旅馆住宿管理办法
- 【香港职业训练局(VTC)】人力调查报告书2024-珠宝、钟表及眼镜业(繁体版)
- 客户分配管理办法管理
- 燃气入户安检培训
- 高中地理思政融合课《全球气候变暖》
评论
0/150
提交评论