版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省沂水县2026届高二数学第一学期期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.连续抛掷一枚硬币3次,观察正面出现的情况,事件“至少2次出现正面”的对立事件是()A.只有2次出现反面 B.至多2次出现正面C.有2次或3次出现正面 D.有2次或3次出现反面2.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B.C. D.3.已知对任意实数,有,且时,则时A. B.C. D.4.椭圆的长轴长是()A.3 B.4C.6 D.85.直线x﹣y+3=0的倾斜角是()A.30° B.45°C.60° D.150°6.命题:,否定是()A., B.,C., D.,7.已知直线,椭圆.若直线l与椭圆C交于A,B两点,则线段AB的中点的坐标为()A. B.C. D.8.已知是边长为6的等边所在平面外一点,,当三棱锥的体积最大时,三棱锥外接球的表面积为()A. B.C. D.9.函数的图象在点处的切线的倾斜角为()A. B.0C. D.110.已知关于x的不等式的解集为空集,则的最小值为()A. B.2C. D.411.如图,四棱锥的底面是矩形,设,,,是棱上一点,且,则()A. B.C. D.12.已知两个向量,若,则的值为()A. B.C.2 D.8二、填空题:本题共4小题,每小题5分,共20分。13.已知拋物线的焦点为F,O为坐标原点,M的准线为l且与x轴相交于点B,A为M上的一点,直线AO与直线l相交于C点,若,,则M的标准方程为______________.14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为100,200,150,50件.为检验产品的质量,现用分层抽样的方法从以上所有产品中抽取60件进行检验,则应从丙种型号的产品中抽取___________件15.已知数列的前项和,则该数列的首项__________,通项公式__________.16.已知抛物线的焦点F在直线上,过点F的直线l与抛物线C相交于A,B两点,O为坐标原点,△的面积是△面积的4倍,则直线l的方程为____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列{}的前n项和为,且2=3-3(n∈)(1)求数列{}的通项公式(2)若=(n+1),求数列{}的前n项和18.(12分)已知椭圆过点,且离心率.(1)求椭圆C的标准方程;(2)若动点在椭圆上,且在第一象限内,点分别为椭圆的左、右顶点,直线分别与椭圆C交于点,过作直线的平行线与椭圆交于点,问直线是否过定点,若经过定点,求出该定点的坐标;若不经过定点,请说明理由.19.(12分)已知直线:,直线:(1)若,之间的距离为3,求c的值:(2)求直线截圆C:所得弦长20.(12分)已知点、分别是椭圆C:)的左、右焦点,点P在椭圆C上,当∠PF1F2=时,面积达到最大,且最大值为.(1)求椭圆C的标准方程;(2)设直线l:与椭圆C交于A、B两点,求面积的最大值.21.(12分)已知椭圆C:的离心率为,左、右焦点分别为、,椭圆上的点到左焦点最近的距离为.(1)求椭圆C的方程;(2)若经过点的直线与椭圆C交于M,N两点,当的面积取得最大值时,求直线的方程.22.(10分)如图,在四棱柱中,平面,底面ABCD满足∥BC,且(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据对立事件的定义即可得出结果.【详解】对立事件是指事件A和事件B必有一件发生,连续抛掷一枚均匀硬币3次,“至少2次出现正面”即有2次或3次出现正面,对立事件为0次或1次出现正面,即“有2次或3次出现反面”故选:D2、C【解析】首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【点睛】本题主要考查了等差数列的基本量的求解,属于基础题.3、B【解析】,所以是奇函数,关于原点对称,是偶函数,关于y轴对称,时则都是增函数,由对称性可知时递增,递减,所以考点:函数奇偶性单调性4、D【解析】根据椭圆方程可得到a,从而求得长轴长.【详解】椭圆方程为,故,所以椭圆长轴长为,故选:D.5、C【解析】先求斜率,再求倾斜角即可【详解】解:直线的斜截式方程为,∴直线的斜率,∴倾斜角,故选:C【点睛】本题主要考查直线的倾斜角与斜率,属于基础题6、D【解析】根据给定条件利用全称量词命题的否定是存在量词命题直接写出作答.【详解】命题:,是全称量词命题,其否定是存在量词命题,所以命题:,的否定是:,.故选:D7、B【解析】联立直线方程与椭圆方程,消y得到关于x的一元二次方程,根据韦达定理可得,进而得出中点的横坐标,代入直线方程求出中点的纵坐标即可.【详解】由题意知,,消去y,得,则,,所以A、B两点中点的横坐标为:,所以中点的纵坐标为:,即线段AB的中点的坐标为.故选:B8、C【解析】由题意分析可得,当时三棱锥的体积最大,然后作图,将三棱锥还原成正三棱柱,按照正三棱柱外接球半径的计算方法来计算,即可计算出球半径,从而完成求解.【详解】由题意可知,当三棱锥的体积最大时是时,为正三角形,如图所示,将三棱锥补成正三棱柱,该正三棱柱的外接球就是三棱锥的外接球,而正三棱柱的外接球球心落在上下底面外接圆圆心连线的中点上,设外接圆半径为,三棱锥外接球半径为,由正弦定理可得:,所以,,所以三棱锥外接球的表面积为.故选:C.9、A【解析】求出导函数,计算得切线斜率,由斜率求得倾斜角【详解】,设倾斜角为,则,,故选:A10、D【解析】根据一元二次不等式的解集的情况得出二次项系数大于零,根的判别式小于零,可得出,再将化为,由和均值不等式可求得最小值.【详解】由题意可得:,,可以得到,而,可以令,则有,当且仅当取等号,所以的最小值为4.故答案为:4.【点睛】本题主要考查均值不等式,关键在于由一元二次不等式的解集的情况得出的关系,再将所求的式子运用不等式的性质降低元的个数,运用均值不等式,是中档题.11、B【解析】根据空间向量基本定理求解【详解】由已知故选:B12、B【解析】直接利用空间向量垂直的坐标运算计算即可.【详解】因为,所以,即,解得.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先利用相似关系计算,求得直线OA的方程,再联立方程求得,利用抛物线定义根据即得p值,即得结果.【详解】因为,,所以,则,如图,,故,解得,所以,直线OA的斜率为,OA的方程,联立直线OA与抛物线方程,解得,所以,故,则抛物线标准方程为.故答案为:.14、【解析】根据分层抽样的方法,即可求解.【详解】由题意,甲、乙、丙、丁四种不同型号的产品,产量分别为100,200,150,50件,用分层抽样的方法从以上所有产品中抽取60件进行检验,则应从丙种型号的产品中抽取个数为件.故答案为:.15、①.;②..【解析】空一:利用代入法直接进行求解即可;空二:利用之间的关系进行求解即可.【详解】空一:;空二:当时,,显然不适合上式,所以,故答案为:;16、【解析】设A,B分别为,由焦点在已知直线上求F坐标及抛物线方程,再根据题设三角形的面积关系可得,并设直线l为,联立抛物线应用韦达定理求参数m,即可知直线l的方程.【详解】设点A,B的坐标分别为,直线,令可得,故焦点F的坐标为,所以,由,,而△的面积是△面积的4倍,所以,即,设直线l为,联立方程,消去x后整理为,所以,代入,有,可得,则直线l的方程为故答案为:.【点睛】关键点点睛:根据抛物线焦点位置及其所在直线求抛物线方程,由面积关系得到交点纵坐标的数量关系,注意交点在x轴两侧,再设直线联立抛物线求参数即可.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用的关系可得,即可知为等比数列,写出等比数列通项公式即可.(2)由(1)得,利用错位相减求和法即可求出前n项和.【小问1详解】当时,,解得,当时,,则,即,又,则,∴,故是以为首项,以3为公比的等比数列,∴数列的通项公式为;【小问2详解】由(1)知,所以,所以①,则②,①-②,得,整理,得,,所以.18、(1)(2)过定点,【解析】(1)根据椭圆上的点及离心率求出a,b即可;(2)设点,设直线的方程为,联立方程,得到根与系数的关系,利用条件化简,结合椭圆方程,求出即可得解.【小问1详解】由,有,又,所以,椭圆C的标准方程为.【小问2详解】设点,设直线的方程为.如图,联立,消有:,韦达定理有:由,所以,又,所以又,所以.又所以有,把代入有:,解得或2,又直线不过右端点,所以,则,所以直线过定点.19、(1)或(2)【解析】(1)根据两条平行直线的距离公式列方程,化简求得的值.(2)利用弦长公式求得.【小问1详解】因为两条平行直线:与:间的距离为3,所以解得或.【小问2详解】圆C:,圆心为,半径为.圆心到直线的距离为,所以弦长20、(1)(2)3【解析】(1)根据焦点三角形的性质可求出,从而可得标准方程,(2)联立直线方程和椭圆方程,消元后利用公式表示三角形面积,从而可求面积的最大值.小问1详解】△PF1F2面积达到最大时为椭圆的上顶点或下顶点,而此时∠PF1F2=,故面积最大时为等边三角形,故,因面积的最大值为,故,故,故椭圆的标准方程为:.【小问2详解】设,则由可得,此时恒成立.而,到的距离为,故的面积,令,设,则,故在上为增函数,故即的最大值为3.21、(1)(2)【解析】(1)根据题意得,,进而解方程即可得答案;(2)根据题意设直线的方程,,,进而,再联立方程,结合韦达定理求解即可.【小问1详解】解:因为椭圆C:的离心率为,所以,因为椭圆上的点到左焦点最近的距离为,所以所以,所以椭圆C的方程为.【小问2详解】解:根据题意,设直线的方程,,设,联立方程得,所以,解得或.,所以的面积为令,则,当且仅当,即时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- rohs考试试题及答案
- 医学课程药学考试题库及答案
- 2026字节跳动校招面笔试题及答案
- 初级考试题会计基础题及答案
- 未来五年羊肉企业ESG实践与创新战略分析研究报告
- 2026黑龙江农业职业技术学院公开招聘博士3人备考题库附答案
- 五险一金待遇优厚!滨州经开区渤海实验学校扩班高薪急聘小学语数英初中英语游泳教师!备考题库必考题
- 北辰集团2026届校园招聘备考题库附答案
- 吉安市2025年度市直事业单位公开选调工作人员【70人】考试备考题库必考题
- 巴中职业技术学院2026年1月人才招聘备考题库附答案
- 施工电梯基础施工方案-北京大学第一医院城南院区工程 V1
- 客房服务员:高级客房服务员考试资料
- 人教版三年级上册竖式计算练习300题及答案
- GB/T 6974.5-2023起重机术语第5部分:桥式和门式起重机
- 心脏血管检查课件
- 运用PDCA循环管理提高手卫生依从性课件
- 二手房定金合同(2023版)正规范本(通用版)1
- 《高职应用数学》(教案)
- 点因素法岗位评估体系详解
- 汉堡规则中英文
- DB63T 1933-2021无人机航空磁测技术规范
评论
0/150
提交评论