江西省抚州市临川一中2026届数学高二上期末监测试题含解析_第1页
江西省抚州市临川一中2026届数学高二上期末监测试题含解析_第2页
江西省抚州市临川一中2026届数学高二上期末监测试题含解析_第3页
江西省抚州市临川一中2026届数学高二上期末监测试题含解析_第4页
江西省抚州市临川一中2026届数学高二上期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省抚州市临川一中2026届数学高二上期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列的前n项和为,公比为q,若,则下列结论正确的是()A. B.C. D.2.已知是抛物线上的一点,是抛物线的焦点,若以为始边,为终边的角,则等于()A. B.C. D.3.在数列中,,则()A. B.C.2 D.14.已知△的顶点B,C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另一个焦点在BC边上,则△的周长是()A. B.C.8 D.165.给出如下四个命题正确的是()①方程表示的图形是圆;②椭圆的离心率;③抛物线的准线方程是;④双曲线的渐近线方程是A.③ B.①③C.①④ D.②③④6.命题P:ax2+2x﹣1=0有实数根,若¬p是假命题,则实数a的取值范围是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}7.如图,在正方体中,异面直线与所成的角为()A. B.C. D.8.已知数列中,,,是的前n项和,则()A. B.C. D.9.若方程表示焦点在y轴上的双曲线,则实数m的取值范围为()A. B.C. D.且10.2013年9月7日,总书记在哈萨克斯坦纳扎尔巴耶夫大学发表演讲在谈到环境保护问题时提出“绿水青山就是金山银山”这一科学论新.某市为了改善当地生态环境,2014年投入资金160万元,以后每年投入资金比上一年增加20万元,从2021年开始每年投入资金比上一年增加10%,到2024年底该市生态环境建设投资总额大约为()(其中,,)A.2559万元 B.2969万元C.3005万元 D.3040万元11.下列命题中正确的是()A.若为真命题,则为真命题B.在中“”是“”的充分必要条件C.命题“若,则或”的逆否命题是“若或,则”D.命题,使得,则,使得12.方程表示椭圆的充分不必要条件可以是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列是等差数列,,公差,为其前n项和,满足,则当取得最大值时,______14.=______.15.已知,,,,使得成立,则实数a的取值范围是___________.16.已知向量,且,则实数________________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C的顶点在坐标原点,准线方程为(1)求抛物线C的标准方程;(2)若AB是过抛物线C的焦点F的弦,以弦AB为直径的圆与直线的位置关系是什么?先给出你的判断结论,再给出你的证明,并作出必要的图形18.(12分)在平面直角坐标系中,已知直线(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的直角坐标为,直线与曲线的交点为,求的值.19.(12分)已知是抛物线的焦点,点在抛物线上,且.(1)求的方程;(2)过上一动点作的切线交轴于点.判断线段的中垂线是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.20.(12分)已知直线l:2mx-y-8m-3=0和圆C:x2+y2-6x+12y+20=0.(1)m∈R时,证明l与C总相交;(2)m取何值时,l被C截得的弦长最短?求此弦长21.(12分)已知直线经过椭圆的右焦点,且椭圆C的离心率为(1)求椭圆C的标准方程;(2)以椭圆的短轴为直径作圆,若点M是第一象限内圆周上一点,过点M作圆的切线交椭圆C于P,Q两点,椭圆C的右焦点为,试判断的周长是否为定值.若是,求出该定值22.(10分)已知椭圆,离心率为,短半轴长为1(1)求椭圆C的方程;(2)已知直线,问:在椭圆C上是否存在点T,使得点T到直线l的距离最大?若存在,请求出这个最大距离;若不存在,请说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据,可求得,然后逐一分析判断各个选项即可得解.【详解】解:因为,所以,因为,所以,所以,故A错误;又,所以,所以,所以,故BC错误;所以,故D正确.故选:D.2、D【解析】设点,取,可得,求出的值,利用抛物线的定义可求得的值.【详解】设点,其中,则,,取,则,可得,因为,可得,解得,则,因此,.故选:D.3、A【解析】利用条件可得数列为周期数列,再借助周期性计算得解.【详解】∵∴,,所以数列是以3为周期的周期数列,∴,故选:A.4、D【解析】根据椭圆定义求解【详解】由椭圆定义得△的周长是,故选:D.5、A【解析】对选项①,根据圆一般方程求解即可判断①错误,对选项②,求出椭圆离心率即可判断②错误,对③,求出抛物线渐近线即可判断③正确,对④,求出双曲线渐近线方程即可判断④错误。【详解】对于①选项,,,故①错误;对于②选项,由题知,所以,所以离心率,故②错误;对于③选项,抛物线化为标准形式得抛物线,故准线方程是,故③正确;对于④选项,双曲线化为标准形式得,所以,焦点在轴上,故渐近线方程是,故④错误.故选:A6、C【解析】根据是假命题,判断出是真命题.对分成,和两种情况,结合方程有实数根,求得的取值范围.详解】┐p是假命题,则p是真命题,∴ax2+2x﹣1=0有实数根,当a=0时,方程为2x﹣1=0,解得x=0.5,有根,符合题意;当a≠0时,方程有根,等价于△=4+4a≥0,∴a≥﹣1且,综上所述,a的可能取值为a≥﹣1故选:C【点睛】本小题主要考查根据命题否定的真假性求参数,属于基础题.7、C【解析】作出辅助线,找到异面直线所成的角,利用几何性质进行求解.【详解】连接与,因为,则为所求,又是正三角形,.故选:C.8、D【解析】由,得到为递增数列,又由,得到,化简,即可求解.【详解】解:由,得,又,所以,所以,即,所以数列为递增数列,所以,得,即,又由是的前项和,则.故选:D.【点睛】关键点睛:本题考查数列求和问题,关键在于由已知条件得出,运用裂项相消求和法.9、A【解析】根据双曲线定义,且焦点在y轴上,则可直接列出相关不等式.【详解】若方程表示焦点在y轴上的双曲线,则必有:,且解得:故选:10、B【解析】前7年投入资金可看成首项为160,公差为20的等差数列,后4年投入资金可看成首项为260,公比为1.1的等比数列,分别求和,即可求出所求【详解】2014年投入资金160万元,以后每年投入资金比上一年增加20万元,成等差数列,则2020年投入资金万元,年共7年投资总额为,从2021年开始每年投入资金比上一年增加,则从2021年到2024年投入资金成首项为,公比为1.1,项数为4的等比数列,故从2021年到2024年投入总资金为,故到2024年底该市生态环境建设投资总额大约为万元故选:11、B【解析】A选项,当一真一假时也满足条件,但不满足为真命题;B选项,可以使用正弦定理和大边对大角,大角对大边进行证明;C选项,利用逆否命题的定义进行判断,D选项,特称命题的否定,把存在改为任意,把结论否定,故可判断D选项.【详解】若为真命题,则可能均为真,或一真一假,则可能为真命题,也可能为假命题,故A错误;在中,由正弦定理得:,若,则,从而,同理,若,则由正弦定理得,,所以,故在中“”是“”的充分必要条件,B正确;命题“若,则或”的逆否命题是“若且,则”,故C错误;命题,使得,则,使得,故D错误.故选:B12、D【解析】由“方程表示椭圆”可求得实数的取值范围,结合充分不必要条件的定义可得出结论.【详解】若方程表示椭圆,则,解得或.故方程表示椭圆的充分不必要条件可以是.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、9或10【解析】等差数列通项公式的使用.【详解】数列是等差数列,且,得,得,则有,又因为,公差,所以或10时,取得最大值故答案为:9或1014、【解析】根据被积函数()表示一个半圆,利用定积分的几何意义即可得解.【详解】被积函数()表示圆心为,半径为2的圆的上半部分,所以.故答案为:.【点睛】本题考查了利用定积分的几何意义来求定积分,在用该方法求解时需注意被积函数的在给定区间内的函数值符号,本题属于中档题.15、【解析】由题可得,求导可得的单调性,将的最小值代入,即得.【详解】∵,,使得成立,∴由,得,当时,,∴在区间上单调递减,在区间上单调递增,∴函数在区间上的最小值为又在上单调递增,∴函数在区间上的最小值为,∴,即实数的取值范围是故答案为:.16、【解析】,利用向量的数量积的坐标运算即可.【详解】,则,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)相切,证明过程、图形见解析.【解析】(1)根据抛物线的准线方程,结合抛物线标准方程进行求解即可;(2)设出直线AB的方程与抛物线方程联立,利用一元二次方程根与系数关系,结合圆的性质进行求解即可.【小问1详解】因为抛物线C的顶点在坐标原点,准线方程为,所以设抛物线C的标准方程为:,因为该抛物线的准线方程为,所以有,所以抛物线C的标准方程;小问2详解】以弦AB为直径的圆与直线相切,理由如下:因为AB是过抛物线C的焦点F的弦,所以直线AB的斜率不为零,设椭圆的焦点坐标为,设直线AB的方程为:,则有,设,则有,因此,所以弦AB为直径的圆的圆心的横坐标为:,以弦AB为直径的圆的直径为:所以弦AB为直径的圆的半径,以弦AB为直径的圆的圆心到准线的距离为:,所以以弦AB为直径的圆与直线相切.【点睛】关键点睛:利用一元二次方程的根与系数关系是解题的关键.18、(1);(2)3.【解析】(1)把展开得,两边同乘得,再代极坐标公式得曲线的直角坐标方程.(2)将代入曲线C的直角坐标方程得,再利用直线参数方程t的几何意义和韦达定理求解.【详解】(1)把展开得,两边同乘得①将代入①,即得曲线的直角坐标方程为②(2)将代入②式,得,点M的直角坐标为(0,3),设这个方程的两个实数根分别为t1,t2,则∴t1<0,t2<0则由参数t的几何意义即得.【点睛】本题主要考查极坐标和直角坐标的互化、直线参数方程t的几何意义,属于基础题.19、(1)(2)过定点,定点为【解析】(1)利用抛物线的定义求解;(2)设直线的方程为,,与抛物线方程联立,根据直线与抛物线C相切,由求得,再得到,写出线段的中垂线方程求解.【小问1详解】解:由题意得,,解得=2p,因为点M(,4)在抛物线C上,所以42=2p=4p2,解得p=2,所以抛物线C的标准方程为.【小问2详解】由已知得,直线的斜率存在且不为0,所以设直线的方程为,与抛物线方程联立并消去得:,因为直线与抛物线C相切,所以,得,,所以,得,在中,令得,所以,所以线段中点为,线段的中垂线方程为,所以线段的中垂线过定点.20、(1)证明见解析;(2)当时,l被C截得的弦长最短,最短弦长为.【解析】(1)求出直线l的定点,进而判断定点和圆C的位置关系,最后得到答案;(2)当圆心C到直线l的距离最大时,弦长最短,进而求出m,然后根据勾股定理求出弦长.【详解】(1)直线l的方程可化为y+3=2m(x-4),则l过定点P(4,-3),由于42+(-3)2-6×4+12×(-3)+20=-15<0,所以点P在圆内,故直线l与圆C总相交(2)圆的C方程可化为:(x-3)2+(y+6)2=25,如图所示,当圆心C(3,-6)到直线l的距离最大时,弦AB的长度最短,此时PC⊥l,又,所以直线l的斜率为,则,在直角中,|PC|=,|AC|=5,所以|AB|=.故当时,l被C截得的弦长最短,最短弦长为.21、(1)(2)周长是定值,且定值为4【解析】(1)首先求出直线与轴的交点,即可求出,再根据离心率求出,最后根据求出,即可得解;(2):设直线的方程为、、,联立直线与椭圆方程,消元列出韦达定理,即可表示出弦的长,再根据直线与圆相切,则圆心到直线的距离等于半径,即可得到,再求出、,最后根据计算即可得解;【小问1详解】解:因为经过椭圆的右焦点,令,则,所以椭圆的右焦点为,可得:,又,可得:,由,所以,∴椭圆的标准方程为;【小问2详解】解:设直线的方程为,由得:,所以,设,,则:,所以.因为直线与圆相切,所以,即,所以,因为,又,所以,同理.所以,即的周长是定值,且定值为422、(1);(2)存在,最大距离为.,理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论