广西百色市田阳高中2026届数学高一上期末统考模拟试题含解析_第1页
广西百色市田阳高中2026届数学高一上期末统考模拟试题含解析_第2页
广西百色市田阳高中2026届数学高一上期末统考模拟试题含解析_第3页
广西百色市田阳高中2026届数学高一上期末统考模拟试题含解析_第4页
广西百色市田阳高中2026届数学高一上期末统考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西百色市田阳高中2026届数学高一上期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.幂函数f(x)的图象过点(4,2),那么f()的值为()A. B.64C.2 D.2.根据表格中的数据可以判定方程的一个根所在的区间为()1234500.6931.0991.3861.60910123A. B.C. D.3.将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,则函数在上的最大值和最小值分别为A. B.C. D.4.已知偶函数的定义域为,当时,,若,则的解集为()A. B.C. D.5.已知,,则下列不等式中恒成立的是()A. B.C. D.6.在平面直角坐标系中,角的顶点与原点重合,角的始边与轴非负半轴重合,角的终边经过点,则()A B.C. D.7.设的两根是,则A. B.C. D.8.有位同学家开了个小卖部,他为了研究气温对热饮销售的影响,经过统计得到一天所卖的热饮杯数(y)与当天气温(x℃)之间的线性关系,其回归方程为=-2.35x+147.77.如果某天气温为2℃,则该小卖部大约能卖出热饮的杯数是A.140 B.143C.152 D.1569.已知直线x+3y+n=0在x轴上的截距为-3,则实数n的值为()A. B.C. D.10.下列函数既不是奇函数,也不是偶函数,且在上单调递增是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知(其中且为常数)有两个零点,则实数的取值范围是___________.12.已知函数,则=_________13.已知,函数,若函数有两个零点,则实数k的取值范围是________14.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是________.15.一条光线从A处射到点B(0,1)后被轴反射,则反射光线所在直线的一般式方程为_____________.16.若f(x)是定义在R上的偶函数,当x≥0时,f(x)=,若方程f(x)=kx恰有3个不同的根,则实数k的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知不过第二象限的直线l:ax-y-4=0与圆x2+(y-1)2=5相切(1)求直线l的方程;(2)若直线l1过点(3,-1)且与直线l平行,直线l2与直线l1关于直线y=1对称,求直线l2的方程18.已知函数的部分图像如图所示.(1)求函数的解析式;(2)若函数在上取得最小值时对应的角度为,求半径为2,圆心角为的扇形的面积.19.在△中,已知,直线经过点(Ⅰ)若直线:与线段交于点,且为△外心,求△的外接圆的方程;(Ⅱ)若直线方程为,且△的面积为,求点的坐标20.已知函数(,且)(1)若函数的图象过点,求b的值;(2)若函数在区间上的最大值比最小值大,求a的值21.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长2的正方形,E,F分别为线段DD1,BD的中点(1)求证:EF∥平面ABD1;(2)AA1=,求异面直线EF与BC所成角的正弦值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】设出幂函数,求出幂函数代入即可求解.【详解】设幂函数为,且图象过点(4,2),解得,所以,,故选:A【点睛】本题考查幂函数,需掌握幂函数的定义,属于基础题.2、C【解析】令,由表中数据结合零点存在性定理即可得解.【详解】令,由表格数据可得.由零点存在性定理可知,在区间内必有零点.故选C.【点睛】本题主要考查了零点存在性定理,属于基础题.3、A【解析】先化简f(x),再结合函数图象的伸缩变换,得到函数y=g(x)的解析式,进而根据正弦型函数最值的求法,求出函数的最大值与最小值【详解】∵函数,∴g(x)∵x∈∴4x∈∴当4x时,g(x)取最大值1;当4x时,g(x)取最小值故选A.4、D【解析】先由条件求出参数,得到在上的单调性,结合和函数为偶函数进行求解即可.【详解】因为为偶函数,所以,解得.在上单调递减,且.因为,所以,解得或.故选:D5、D【解析】直接利用特殊值检验及其不等式的性质判断即可.【详解】对于选项A,令,,但,则A错误;对于选项B,令,,但,则B错误;对于选项C,当时,,则C错误;对于选项D,有不等式的可加性得,则D正确,故选:D.6、A【解析】根据任意角的三角函数定义即可求解.【详解】解:由题意知:角的终边经过点,故.故选:A.7、D【解析】详解】解得或或即,所以故选D8、B【解析】一个热饮杯数与当天气温之际的线性关系,其回归方程某天气温为时,即则该小卖部大约能卖出热饮的杯数是故选点睛:本题主要考查的知识点是线性回归方程的应用,即根据所给的或者是做出的线性回归方程,预报的值,这是一些解答题9、B【解析】根据题意,分析可得点(﹣3,0)在直线x+3y+n=0上,将点的坐标代入直线方程,计算可得答案【详解】根据题意,直线x+3y+n=0在x轴上的截距为﹣3,则点(﹣3,0)在直线x+3y+n=0上,即(﹣3)×+n=0,解可得:n=3;故选B【点睛】本题考查直线的一般式方程以及截距的计算,关键是掌握直线一般方程的形式,属于基础题10、C【解析】是偶函数,是奇函数,和既不是奇函数也不是偶函数,在上是减函数,是增函数,故选C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设,可转化为有两个正解,进而可得参数范围.【详解】设,由有两个零点,即方程有两个正解,所以,解得,即,故答案为:.12、【解析】按照解析式直接计算即可.【详解】.故答案为:-3.13、【解析】由题意函数有两个零点可得,得,令与,作出函数与的图象如图所示:由图可知,函数有且只有两个零点,则实数的取值范围是.故答案为:.【点睛】本题考查分段函数的应用,函数零点的判断等知识,解题时要灵活应用数形结合思想14、【解析】长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积【详解】长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:,则这个球的表面积是:故答案为:【点睛】本题考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力15、【解析】根据反射光线的性质,确定反射光线上的两个点的坐标,最后确定直线的一般式方程.【详解】因为一条光线从A处射到点B(0,1)后被轴反射,所以点A关于直线对称点为,根据对称性可知,反射光线所在直线过点,又因为反射光线所在直线又过点,所以反射光线所在直线斜率为,所以反射光线所在直线方程为,化成一般式得:,故答案为:.16、[-,-)∪(,]【解析】利用周期与对称性得出f(x)的函数图象,根据交点个数列出不等式得出k的范围【详解】∵当x>2时,f(x)=f(x-1),∴f(x)在(1,+∞)上是周期为1的函数,作出y=f(x)的函数图象如下:∵方程f(x)=kx恰有3个不同的根,∴y=f(x)与y=kx有三个交点,若k>0,则若k<0,由对称性可知.故答案为[-,-)∪(,].【点睛】本题考查了函数零点与函数图象的关系,函数周期与奇偶性的应用,方程根的问题常转化为函数图象的交点问题,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2x-y-4=0(2)2x+y-9=0【解析】(1)利用直线l与圆x2+(y-1)2=5相切,,结合直线l不过第二象限,求出a,即可求直线l的方程;(2)直线l1的方程为2x-y+b=0,直线l1过点(3,-1),求出b,即可求出直线l1的方程;利用直线l2与l1关于y=1对称,求出直线的斜率,即可求直线l2的方程【详解】(1)∵直线l与圆x2+(y-1)2=5相切,∴,∵直线l不过第二象限,∴a=2,∴直线l的方程为2x-y-4=0;(2)∵直线l1过点(3,-1)且与直线l平行,∴直线l1方程为2x-y+b=0,∵直线l1过点(3,-1),∴b=-7,则直线l1的方程为2x-y-7=0,∵直线l2与l1关于y=1对称,∴直线l2的斜率为-2,且过点(4,1),∴直线l2的斜率为y-1=-2(x-4),即化简得2x+y-9=0【点睛】本题考查直线方程,考查直线与直线的位置关系,属于中档题18、(1).(2).【解析】(1)由图象观察,最值求出,周期求出,特殊点求出,所以;(2)由题意得,所以扇形面积试题解析:(1)∵,∴根据函数图象,得.又周期满足,∴.解得.当时,.∴.∴.故.(2)∵函数的周期为,∴在上的最小值为-2.由题意,角满足,即.解得.∴半径为2,圆心角为的扇形面积为.19、(Ⅰ)(Ⅱ)或【解析】(Ⅰ)先求出直线的方程,进而得到D点坐标,为直径长,从而得到△的外接圆的方程;(Ⅱ)由题意可得,,从而解得点的坐标【详解】(Ⅰ)解法一:由已知得,直线的方程为,即,联立方程组得:,解得,又,△的外接圆的半径为∴△的外接圆的方程为.解法二:由已知得,,且为△的外心,∴△为直角三角形,为线段的中点,∴圆心,圆的半径,∴△的外接圆的方程为.或线段即为△的外接圆的直径,故有△的外接圆的方程为,即(Ⅱ)设点的坐标为,由已知得,,所在直线方程,到直线的距离,①又点的坐标为满足方程,即②联立①②解得:或,∴点的坐标为或【点睛】本题考查了圆的方程,直线的交点,点到直线的距离,考查了逻辑推理能力与计算能力,属于基础题.20、(1)1(2)或【解析】(1)将点坐标代入求出b的值;(2)分与两种情况,根据函数单调性表达出最大值和最小值,列出方程,求解a的值.【小问1详解】,解得.【小问2详解】当时,在区间上单调递减,此时,,所以,解得:或0(舍去);当时,在区间上单调递增,此时,,所以,解得:或0(舍去).综上:或21、(1)证明过程详见解析(2)【解析】(1)先证明EF∥D1B,即证EF∥平面ABD1.(2)先证明∠D1BC是异面直线EF与BC所成的角(或所成角的补角),再解三角形求其正弦值.【详解】(1)证明:连结BD1,在△DD1B中,E、F分别是D1D、DB的中点,∴EF是△DD1B的中位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论