版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省汝州市实验中学2026届数学高一上期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点所在区间为()A. B.C. D.2.用斜二测画法画一个水平放置的平面图形的直观图是如图所示的一个正方形,则原来的图形是()A. B.C. D.3.若,则是()A.第一象限或第三象限角 B.第二象限或第四象限角C.第三象限或第四象限角 D.第二象限或第三象限角4.下列四个函数中,以π为最小正周期,且在区间上单调递减的是()A. B.C. D.5.已知角α的终边过点,则的值是()A. B.C.0 D.或6.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额,此项税款按下表分段累计计算:全月应纳税所得额税率不超过3000元的部分超过3000元至12000元的部分超过12000元至25000元的部分有一职工八月份收入20000元,该职工八月份应缴纳个税为()A.2000元 B.1500元C.990元 D.1590元7.已知,则的值是A.0 B.–1C.1 D.28.《九章算术》中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=×(弦×矢+矢).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,半径为2米的弧田(如图2),则这个弧田面积大约是()平方米.(,结果保留整数)A.2 B.3C.4 D.59.设是互不重合的平面,m,n是互不重合的直线,给出下面四个说法:①若,,则;②若,,则;③若,,则;④若,,,则.其中所有错误说法的序号是()A.①③ B.①④C.①③④ D.②③④10.已知函数满足,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若,则___________;若存在,满足,则的取值范围是___________.12.已知集合,则___________13.将函数的图象先向右平移个单位长度,得到函数________________的图象,再把图象上各点横坐标缩短到原来的(纵坐标不变),得到函数________________的图象14.若,,,则的最小值为____________.15.已知,α为锐角,则___________.16.已知a=0.32,b=413,c=log132,则a三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的最小正周期为,再从下列两个条件中选择一个作为已知条件:条件①:的图象关于点对称;条件②:的图象关于直线对称(1)请写出你选择的条件,并求的解析式;(2)在(1)的条件下,当时,求的最大值和最小值,并指出相应的取值注;如果选择条件①和条件②分别解答,按第一个解答计分18.(1)计算(2)已知角的终边过点,求角的三个三角函数值19.△ABC的两顶点A(3,7),B(,5),若AC的中点在轴上,BC的中点在轴上(1)求点C的坐标;(2)求AC边上中线BD的长及直线BD的斜率20.已知函数的部分图象如图所示.(1)求函数的解析式,并求它的对称中心的坐标;(2)将函数的图象向右平移个单位,得到的函数为偶函数,求函数,的最值及相应的值.21.已知函数是奇函数(1)求a的值,并根据定义证明函数在上单调递增;(2)求的值域
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由零点存在定理判定可得答案.【详解】因为在上单调递减,且,,所以的零点所在区间为故选:B2、A【解析】由斜二测画法的规则知与x'轴平行或重合的线段与x’轴平行或重合,其长度不变,与y轴平行或重合的线段与x’轴平行或重合,其长度变成原来的一半,正方形的对角线在y'轴上,可求得其长度为,故在平面图中其在y轴上,且其长度变为原来的2倍,长度为2,观察四个选项,A选项符合题意.故应选A考点:斜二测画法点评:注意斜二测画法中线段长度的变化3、D【解析】由已知可得即可判断.【详解】,即,则且,是第二象限或第三象限角.故选:D.4、B【解析】先判断各函数最小正周期,再确定各函数在区间上单调性,即可选择判断【详解】对于A,最小正周期为2π,在区间上单调递减,不合题意;对于B,最小正周期为π,在区间上单调递减,符合题意;对于C,最小正周期为2π,在区间上单调递减,不合题意;对于D,最小正周期为π,在区间上单调递增,不合题意;故选:B.5、B【解析】根据三角函数的定义进行求解即可.【详解】因为角α的终边过点,所以,,,故选:B6、D【解析】根据税款分段累计计算的方法,分段求得职工超出元的部分的纳税所得额,即可求解.【详解】由题意,职工八月份收入为元,其中纳税部分为元,其中不超过3000元的部分,纳税额为元,超过3000元至12000元的部分,纳税额为元,超过12000元至25000元的部分,纳税额为元,所以该职工八月份应缴纳个税为元.故选:D.7、A【解析】利用函数解析式,直接求出的值.【详解】依题意.故选A.【点睛】本小题主要考查函数值的计算,考查函数的对应法则,属于基础题.8、A【解析】先由已知条件求出,然后利用公式求解即可【详解】因为,所以,在中,,所以,所以,所以这个弧田面积为,故选:A9、C【解析】①利用平面与平面的位置关系判断;②利用线面垂直的性质定理判断;③利用直线与直线的位置关系判断;④利用面面垂直的性质定理判断.【详解】①若,,则或相交,故错误;②若,,则可得,故正确;③若,,则,故错误;④若,,,当时,,故错误.故选:C10、D【解析】由已知可得出,利用弦化切可得出关于的方程,结合可求得的值.【详解】因为,且,则,,可得,解得.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】若,则,然后分、两种情况求出的值即可;画出的图象,若存在,满足,则,其中,然后可得,然后可求出答案.【详解】因为,所以若,则,当时,,解得,满足当时,,解得,不满足所以若,则的图象如下:若存在,满足,则,其中所以因为,所以,,所以故答案为:;12、【解析】根据集合的交集的定义进行求解即可【详解】当时,不等式不成立,当时,不等式成立,当时,不等式不成立,当时,不等式不成立,所以,故答案为:13、①.②.【解析】根据三角函数的图象变换可得变换后函数的解析式.【详解】由三角函数的图象变换可知,函数的图象先向右平移可得,再把图象上各点横坐标缩短到原来的(纵坐标不变)可得,故答案为:;14、9【解析】“1”的代换法去求的最小值即可.【详解】(当且仅当时等号成立)则的最小值为9故答案为:915、【解析】由同角三角函数关系和诱导公式可得结果.【详解】因为,且为锐角,则,所以,故.故答案为:.16、a>b>c【解析】根据指数函数与对数函数单调性直接判断即可.【详解】由已知得a=0.32<b=413所以a>b>c,故答案为:a>b>c.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)时,有最小值,时,有最大值2.【解析】(1)若选①,根据周期求出,然后由并结合的范围求出,最后求出答案;若选②,根据周期求出,然后由并结合的范围求出,最后求出答案;(2)结合(1),先求出的范围,然后结合正弦函数的性质求出答案.【小问1详解】若选①,由题意,,因为函数的图象关于点对称,所以,而,则,于是.若选②,由题意,,因为函数的图象关于直线对称,所以,而,则,于是.【小问2详解】结合(1),因为,所以,则当时,有最小值为,当时,有最大值为.18、(1);(2),,【解析】(1)根据指数、对数运算性质求解即可.(2)根据三角函数定义求解即可.【详解】(1).(2)由题知:,所以,,19、(1)(2),【解析】(1)由条件利用线段的中点公式求得点C的坐标;(2)求得线段AC的中点D的坐标,再利用两点间的距离公式、斜率公式求得AC边上的中线BD的长及直线BD的斜率试题解析:(1)设,考点:1.待定系数法求直线方程;2.中点坐标公式20、(1),对称中心坐标为;(2),此时;,此时.【解析】⑴由图象求得振幅,周期,利用周期公式可求,将点代入解得,求得函数解析式,又,解得的值,可得函数的对称中心的坐标;⑵由题意求出及函数的解析式,又因为,同时结合三角函数的图象进行分析,即可求得最值及相应的值解析:(1)根据图象知,,∴,∴,将点代入,解得,∴,又∵,解得,∴的对称中心坐标为.(2),∵为偶函数,∴,∴,又∵,∴,∴,∴.∵,∴,∴,∴,此时;,此时.点睛:本题考查了依据三角函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高级保育员考试题库及答案
- 2025年全国大学生525心理知识竞赛题库及答案
- 安全教育培训考核试题(项目经理、管理人员、安全员)附答案
- 银行金融考试题库及答案
- 登高操作考试题库及答案
- 大二营养学考试题及答案
- 未来五年小米企业县域市场拓展与下沉战略分析研究报告
- 2026顺义区大孙各庄社区卫生服务中心第一次编外招聘4人备考题库附答案
- 临汾市2025年度市级机关公开遴选公务员参考题库必考题
- 内江市第六人民医院2025年员额人员招聘(14人)考试备考题库附答案
- 核电站防地震应急方案
- 2025江西江新造船有限公司招聘70人模拟笔试试题及答案解析
- 重庆市丰都县2025届九年级上学期1月期末考试英语试卷(不含听力原文及音频答案不全)
- 2026年党支部主题党日活动方案
- 干炉渣运输合同范本
- 品牌设计报价方案
- 2024年地理信息技术与应用能力初级考试真题(一)(含答案解析)
- 初中英语必背3500词汇(按字母顺序+音标版)
- 《国家基层高血压防治管理指南2025版》解读 2
- 实施指南(2025)《HG-T 6214-2023 邻氨基苯酚》
- 安全生产相关工作主要业绩及研究成果
评论
0/150
提交评论