2026届贵州省六盘水市第二十三中学高二数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2026届贵州省六盘水市第二十三中学高二数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2026届贵州省六盘水市第二十三中学高二数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2026届贵州省六盘水市第二十三中学高二数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2026届贵州省六盘水市第二十三中学高二数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届贵州省六盘水市第二十三中学高二数学第一学期期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线=的焦点为F,M、N是抛物线上两个不同的点,若,则线段MN的中点到y轴的距离为()A.8 B.4C. D.92.在一个正方体中,为正方形四边上的动点,为底面正方形的中心,分别为中点,点为平面内一点,线段与互相平分,则满足的实数的值有A.0个 B.1个C.2个 D.3个3.已知抛物线:的焦点为F,准线l上有两点A,B,若为等腰直角三角形且面积为8,则抛物线C的标准方程是()A. B.C.或 D.4.已知椭圆的左、右焦点分别为、,点在椭圆上,若,则的面积为()A. B.C. D.5.抛物线的焦点到准线的距离是A. B.1C. D.6.“”是“直线和直线垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.函数图象如图所示,则的解析式可以为A. B.C. D.8.已知正方形ABCD的边长为2,E,F分别为CD,CB的中点,分别沿AE,AF将三角形ADE,ABF折起,使得点B,D恰好重合,记为点P,则AC与平面PCE所成角等于()A. B.C. D.9.在中,若,,,则此三角形解的情况为()A.无解 B.两解C.一解 D.解的个数不能确定10.已知,,,则最小值是()A.10 B.9C.8 D.711.以轴为对称轴,顶点为坐标原点,焦点到准线的距离为4的抛物线方程是()A. B.C.或 D.或12.过点A(3,3)且垂直于直线的直线方程为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一条直线过点,且与抛物线交于,两点.若,则弦中点到直线的距离等于__________14.已知等比数列的各项均为实数,其前项和为,若,,则__________.15.不透明袋中装有完全相同,标号分别为1,2,3,…,8的八张卡片.从中随机取出3张.设X为这3张卡片的标号相邻的组数(例如:若取出卡片的标号为3,4,5,则有两组相邻的标号3、4和4、5,此时X的值是2).则随机变量X的数学期望______16.双曲线的离心率为____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知过抛物线的焦点F且斜率为1的直线l交C于A,B两点,且(1)求抛物线C的方程;(2)求以C的准线与x轴的交点D为圆心且与直线l相切的圆的方程18.(12分)求下列函数导数:(1);(2);19.(12分)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M、N分别是AB、PC的中点(1)求证:平面MND⊥平面PCD;(2)求点P到平面MND的距离20.(12分)已知椭圆C:()过点,且离心率为(1)求椭圆C的方程;(2)过点()的直线l(不与x轴重合)与椭圆C交于A,B两点,点C与点B关于x轴对称,直线AC与x轴交于点Q,试问是否为定值?若是,请求出该定值,若不是,请说明理由21.(12分)如图,四棱锥中,底面ABCD是边长为2的菱形,,,且,E为PD的中点(1)求证:;(2)求二面角的大小;(3)在侧棱PC上是否存在点F,使得点F到平面AEC的距离为?若存在,求出的值;若不存在,请说明理由22.(10分)在平面直角坐标系中,点,直线轴,垂足为H,,圆N过点O,与l的公共点的轨迹为(1)求的方程;(2)过M的直线与交于A,B两点,若,求

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】过分别作垂直于准线,垂足为,则由抛物线的定义可得,再过MN的中点作垂直于准线,垂足为,然后利用梯形的中位线定理可求得结果【详解】抛物线=的焦点,准线方程为直线如图,过分别作垂直于准线,垂足为,过MN的中点作垂直于准线,垂足为,则由抛物线的定义可得,因为,所以,因为是梯形的中位线,所以,所以线段MN的中点到y轴的距离为4,故选:B2、C【解析】因为线段D1Q与OP互相平分,所以四点O,Q,P,D1共面,且四边形OQPD1为平行四边形.若P在线段C1D1上时,Q一定在线段ON上运动,只有当P为C1D1的中点时,Q与点M重合,此时λ=1,符合题意若P在线段C1B1与线段B1A1上时,在平面ABCD找不到符合条件Q;在P在线段D1A1上时,点Q在直线OM上运动,只有当P为线段D1A1的中点时,点Q与点M重合,此时λ=0符合题意,所以符合条件的λ值有两个故选C.3、C【解析】分或()两种情况讨论,由面积列方程即可求解【详解】由题意得,当时,,解得;当或时,,解得,所以抛物线的方程是或.故选:C.4、B【解析】求出,可知为等腰三角形,取的中点,可得出,利用勾股定理求得,利用三角形的面积公式可求得结果.【详解】在椭圆中,,,则,所以,,由椭圆的定义可得,取的中点,因为,则,由勾股定理可得,所以,.故选:B.5、D【解析】,,所以抛物线的焦点到其准线的距离是,故选D.6、A【解析】因为直线和直线垂直,所以或,再根据充分必要条件的定义判断得解.【详解】因为“直线和直线垂直,所以或.当时,直线和直线垂直;当直线和直线垂直时,不一定成立.所以是直线和直线垂直的充分不必要条件,故选:A7、A【解析】利用排除法:对于B,令得,,即有两个零点,不符合题意;对于C,当时,,当且仅当时等号成立,即函数在区间上存在最大值,不符合题意;对于D,的定义域为,不符合题意;本题选择A选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项8、A【解析】如图,以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,利用空间向量求解【详解】由题意得,因为正方形ABCD的边长为2,E,F分别为CD,CB的中点,所以,所以,所以所以PA,PE,PF三线互相垂直,故以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,则,,,,设,则由,,,得,解得,则设平面的法向量为,则,令,则,因为,所以AC与平面PCE所成角的正弦值,因为AC与平面PCE所成角为锐角,所以AC与平面PCE所成角为,故选:A9、C【解析】求出的值,结合大边对大角定理可得出结论.【详解】由正弦定理可得可得,因为,则,故为锐角,故满足条件的只有一个.故选:C.10、B【解析】利用题设中的等式,把的表达式转化成展开后,利用基本不等式求得的最小值【详解】∵,,,∴=,当且仅当,即时等号成立故选:B11、C【解析】根据抛物线的概念以及几何性质即可求抛物线的标准方程.【详解】依题意设抛物线方程为因为焦点到准线的距离为4,所以,所以,所以抛物线方程或故选:C12、D【解析】过点A(3,3)且垂直于直线的直线斜率为,代入过的点得到.故答案为D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出弦的中点到抛物线准线的距离,进一步得到弦的中点到直线的距离【详解】解:如图,抛物线的焦点为,,弦的中点到准线的距离为,则弦的中点到直线的距离等于故答案为:14、1【解析】分公比和两种情况讨论,结合,,即可得出答案.【详解】解:设等比数列的公比为,当,由,,不合题意,当,由,得,综上所述.故答案为:1.15、##【解析】设为这3张卡片的标号相邻的组数,则的可能取值为0,1,2,利用列举法分别求出相应的概率,由此能求出随机变量的数学期望【详解】解:不透明袋中装有完全相同,标号分别为1,2,3,,8的八张卡片从中随机取出3张,共有种,设为这3张卡片的标号相邻的组数,则的可能取值为0,1,2,的情况有:,2,,,3,,,4,,,5,,,6,,,7,,共6个,,的情况有:取,另外一个数有5种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有5种取法的情况一共有:,,,随机变量的数学期望:故答案为:16、【解析】由题意得:考点:双曲线离心率三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)首先表示出直线l的方程,再联立直线与抛物线方程,消去,列出韦达定理,再根据焦点弦公式计算可得;(2)由(1)可得,再利用点到直线的距离求出半径,即可求出圆的方程;【详解】解析:(1)由已知得点,∴直线l的方程为,联立去,消去整理得设,,则,,∴抛物线C的方程为(2)由(1)可得,直线l的方程为,∴圆D的半径,∴圆D的方程为【点睛】本题考查抛物线的简单几何性质,属于中档题.18、(1);(2)【解析】根据基本初等函数的导数公式以及导数的运算法则计算可得;【详解】解:(1)因为所以,即(2)因为所以,即19、(1)见解析;(2)【解析】(1)作出如图所示空间直角坐标系,根据题中数据可得、、的坐标,利用垂直向量数量积为零的方法算出平面、平面的法向量分别为,,和,1,,算出,可得,从而得出平面平面;(2)由(1)中求出的平面法向量,,与向量,2,,利用点到平面的距离公式加以计算即可得到点到平面的距离【详解】(1)证明:平面,,、、两两互相垂直,如图所示,分别以、、所在直线为轴、轴和轴建立空间直角坐标系,则,0,,,0,,,2,,,2,,,0,,,0,,,1,,,1,,,1,,,2,设,,是平面的一个法向量,可得,取,得,,,,是平面的一个法向量,同理可得,1,是平面的一个法向量,,,即平面的法向量与平面的法向量互相垂直,可得平面平面;(2)解:由(1)得,,是平面的一个法向量,,2,,得,点到平面的距离20、(1)(2)为定值【解析】(1)由题意可得解方程组求出,从而可得椭圆方程,(2)设直线AB:,,代入椭圆方程,消去,利用根与系数关系,再表示出直线AC的方程,从而可求出点Q的坐标,从而可表示出,然后化简可得结论【小问1详解】由题意得解得故椭圆C的方程为;【小问2详解】设直线AB:,,联立消去y得,设,,得,,因为点C与点B关于x轴对称,所以,所以直线AC的斜率为,直线AC的方程,令,解得可得,所以,因为,所以,所以为定值【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,解题的关键是将直线AB的方程代入椭圆方程中化简,利用根与系数关系,结合已知条件表示出直线AC的方程,从而可求出点Q的坐标,考查计算能力,属于中档题21、(1)证明见解析(2)(3)存在;【解析】(1)作出辅助线,证明线面垂直,进而证明线线垂直;(2)建立空间直角坐标系,用空间向量求解二面角;(3)设出F点坐标,用空间向量的点到平面距离公式进行求解.【小问1详解】证明:连接BD,设BD与AC交于点O,连接PO.因为,所以四棱锥中,底面ABCD是边长为2的菱形,则又,所以平面PBD,因为平面PBD,所以【小问2详解】因为,所以,所以由(1)知平面ABCD,以O为原点,,,的方向为x轴,y轴,z轴正方向,建立空间直角坐标系,则,,,,,,所以,,,设平面AEC的法向量,则,即,令,则平面ACD的法向量,,所以二面角为;【小问3详解】存在点F到平面AEC的距离为,理由如下:由(2)得,,设,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论