版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沂市罗庄区2026届高一上数学期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,,则a,b,c的大小关系是A. B.C. D.2.已知向量,,则A. B.C. D.3.已知,若函数在上为减函数,且函数在上有最大值,则a的取值范围为()A. B.C. D.4.已知函数的定义域为,则函数的定义域为()A. B.C. D.5.已知实数,满足,,则的最大值为()A. B.1C. D.26.一个容量为1000的样本分成若干组,已知某组的频率为0.4,则该组的频数是A.400 B.40C.4 D.6007.已知命题,,命题,,则下列命题中为真命题的是()A. B.C. D.8.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为()A.y=2sin B.y=C.y=2sin D.y=2sin9.已知角的终边过点,若,则A.-10 B.10C. D.10.“,”是“函数的图象关于点中心对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.由于德国著名数学家狄利克雷对数论、数学分析和物理学的突出贡献,人们将函数命名狄利克雷函数,已知函数,下列说法中:①函数的定义域和值域都是;②函数是奇函数;③函数是周期函数;④函数在区间上是单调函数.正确结论是__________12.函数的单调增区间是______13.当时,使成立的x的取值范围为______14.若,,,则的最小值为___________.15.在直角坐标系中,直线的倾斜角________16.已知是R上的奇函数,且当时,,则的值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,,是以为斜边的等腰直角三角形,且.(1)证明:平面平面.(2)若四棱锥的体积为4,求四面体的表面积.18.已知函数.(1)请用“五点法”画出函数在上的图象(先列表,再画图);(2)求在上的值域;(3)求使取得最值时的取值集合,并求出最值19.在中,角A,B,C为三个内角,已知,.(1)求的值;(2)若,D为AB的中点,求CD的长及的面积.20.设函数.(1)计算;(2)求函数的零点;(3)根据第(1)问计算结果,写出的两条有关奇偶性和单调性的正确性质,并证明其中一个.21.已知全集,集合,.(1)当时,求;(2)若,且,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用函数,,单调性,借助于0和1,即可对a、b、c比较大小,得到答案【详解】由题意,可知函数是定义域上的增函数,,又是定义域上的增函数,,又是定义域上的减函数,,所以,故选A【点睛】本题主要考查了函数值的比较大小问题,其中解答中熟记指数函数、对数函数的单调性,借助指数函数、对数函数的单调性进行判定是解答的关键,着重考查了推理与运算能力,属于基础题.2、A【解析】因为,故选A.3、A【解析】由复合函数在上的单调性可构造不等式求得,结合已知可知;当时,,若,可知无最大值;若,可得到,解不等式,与的范围结合可求得结果.【详解】在上为减函数,解得:当时,,此时当,时,在上单调递增无最大值,不合题意当,时,在上单调递减若在上有最大值,解得:,又故选【点睛】本题考查根据复合函数单调性求解参数范围、根据分段函数有最值求解参数范围的问题;关键是能够通过分类讨论的方式得到处于不同范围时在区间内的单调性,进而根据函数有最值构造不等式;易错点是忽略对数真数大于零的要求,造成范围求解错误.4、B【解析】抽象函数的定义域求解,要注意两点,一是定义域是x的取值范围;二是同一对应法则下,取值范围一致.【详解】的定义域为,,即,,解得:且,的定义域为.故选:.5、C【解析】运用三角代换法,结合二倍角的正弦公式、正弦型函数的最值进行求解【详解】由,得,令,则,因为,所以,即,所以的最大值为,故选:C6、A【解析】频数为考点:频率频数的关系7、D【解析】先判断命题的真假,再利用复合命题的真假判断得解.【详解】解:方程的,故无解,则命题p为假;而,故命题q为真;故命题、、均为假命题,为真命题.故选:D8、C【解析】先从图象中看出A,再求出最小正周期,求出ω,代入特殊值后结合φ范围求出φ的值,得到答案.【详解】由图象可知A=2,因为-==,所以T=,ω=2.当x=-时,2sin=2,即sin=1,又|φ|<,解得φ=.故函数的解析式为y=2sin.故选:C9、A【解析】因为角的终边过点,所以,得,故选A.10、A【解析】先求出函数的图象的对称中心,从而就可以判断.【详解】若函数的图象关于点中心对称,则,,所以“,”是“函数的图象关于点中心对称”的充分不必要条件故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、①【解析】由题意知,所以①正确;根据奇函数的定义,x是无理数时,显然不成立,故②错误;当x是有理数时,显然不符合周期函数的定义故③错误;函数在区间上是既不是增函数也不是减函数,故④错误;综上填①.12、【解析】先求出函数定义域,再换元,利用复合函数单调性的求法求解【详解】由,得,所以函数的定义域为,令,则,因为在上递增,在上递减,而在上为增函数,所以在上递增,在上递减,故答案为:13、【解析】根据正切函数的图象,进行求解即可【详解】由正切函数的图象知,当时,若,则,即实数x的取值范围是,故答案为【点睛】本题主要考查正切函数的应用,利用正切函数的性质结合函数的单调性是解决本题的关键14、3【解析】利用基本不等式常值代换即可求解.【详解】因为,,,所以,当且仅当,即时,等号成立,所以的最小值为3,故答案为:315、##30°【解析】由直线方程得斜率,由斜率得倾斜角【详解】试题分析:直线化成,可知,而,故故答案为:16、【解析】由已知函数解析式可求,然后结合奇函数定义可求.【详解】因为是R上的奇函数,且当时,,所以,所以故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)9【解析】(1)由已知可得,根据线面垂直的判定得平面,进而可得平面,由面面垂直的判定可得证.(2)根据四棱锥的体积可得.过作于,连接,可证得平面,.可求得,可求得四面体的表面积.【详解】(1)证明:∵是以为斜边的等腰直角三角形,∴,又,∴平面,则.又,∴平面.又平面,∴平面平面.(2)解:∵,且,∴.∴.过作于,连接,∵.∴平面,则.∵.∴.∴.故四面体的表面积为.【点睛】本题考查面面垂直的证明,四棱锥的体积和表面积的计算,关键在于熟记各线面平行、垂直,面面平行、垂直的判定定理,严格地满足所需的条件,属于中档题.18、(1)答案见解析(2)(3)答案见解析【解析】(1)取五个值,列表描点连线即可得出答案;(2)根据图象求出的范围,即可得出答案;(3)根据正弦函数最值即可得出答案.【小问1详解】列表如下:10-10020-20在直角坐标系中描点连线,如图所示:【小问2详解】当时,,所以,所以.所以在上的值域为【小问3详解】当时,取最大值2令,则当时,取最小值-2令,则所以使取得最大值时的取值集合为,且最大值为2取得最小值时的取值集合为,且最大值为-2.19、(1).(2),的面积.【解析】(1)由可求出,再利用展开即可得出答案;(2)由正弦定理可得,解出,再结合(1)可得,则,从而求出,然后由余弦定理解出,故在中利用余弦定理可得,最后求出的面积即可.【详解】(1),,,;(2)由正弦定理可得,解得,由(1)可得:,,,,,又由余弦定理可得:,解得,在中,,,的面积.【点睛】本题考查了三角函数的和差公式以及正、余弦定理的应用,考查了同角三角函数基本关系式,需要学生具备一定的推理与计算能力,属于中档题.20、(1),,,;(2)零点为;(3)答案见解析.【解析】(1)根据解析式直接计算即可;(2)由可解得结果;(3)由(1)易知为非奇非偶函数,用定义证明是上的减函数.【详解】(1),,,.(2)令得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 传染病及食源性疾病培训后测试题试题(+答案)
- 普通兽医学题库及答案
- 针灸学考试笔试试题及答案
- 职业病防治考试试卷(及答案)
- 银行专业考试题库及答案
- 2025院感理论考试题附有答案
- 广东省幼儿园教师招聘笔试真题及答案详解
- 物流服务师真题及答案
- 九级名著考试题及答案
- 环境监测试题配答案解析
- 2026年上海高考英语真题试卷+解析及答案
- 10kV小区供配电设计、采购、施工EPC投标技术方案技术标
- 新人教版七年级上册初中数学全册教材习题课件
- 2024-2025学年湖北省咸宁市高二生物学上册期末达标检测试卷及答案
- 池塘承包权合同
- JTG F40-2004 公路沥青路面施工技术规范
- 三片饮料罐培训
- 副园长个人发展规划
- 第九届、第十届大唐杯本科AB组考试真总题库(含答案)
- 统编部编版九年级下册历史全册教案
- 商业地产策划方案+商业地产策划方案基本流程及-商业市场调查报告(购物中心)
评论
0/150
提交评论