版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届黑龙江省哈尔滨市三中高一上数学期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则的大小关系()A. B.C. D.2.函数的零点为,,则的值为()A.1 B.2C.3 D.43.函数的最小正周期是()A. B.C. D.34.若cos(πA.-29C.-595.下列四个集合中,是空集的是()A. B.C. D.6.已知,,,则a,b,c的大小关系正确的是()A.a>b>c B.b>c>aC.c>b>a D.c>a>b7.某几何体的三视图如图所示,则该几何体的体积是A. B.8C.20 D.248.已知函数,若不等式对任意实数x恒成立,则a的取值范围为()A B.C. D.9.已知函数fx①fx的定义域是-②fx③fx在区间(0,+④fx的图像与gx=1其中正确的结论是()A.①② B.③④C.①②③ D.①②④10.下列命题正确的是A.在空间中两条直线没有公共点,则这两条直线平行B.一条直线与一个平面可能有无数个公共点C.经过空间任意三点可以确定一个平面D.若一个平面上有三个点到另一个平面的距离相等,则这两个平面平行二、填空题:本大题共6小题,每小题5分,共30分。11.函数的零点为_________________.12.已知,则函数的最大值为__________.13.已知直线与圆相切,则的值为________14.已知函数,则______.15.制造一种零件,甲机床的正品率为,乙机床的正品率为.从它们制造的产品中各任抽1件,则两件都是正品的概率是__________16.①函数y=sin2x的单调增区间是[],(k∈Z);②函数y=tanx在它的定义域内是增函数;③函数y=|cos2x|的周期是π;④函数y=sin()是偶函数;其中正确的是____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的最小正周期和对称中心;(2)填上面表格并用“五点法”画出在一个周期内的图象18.已知非空数集,设为集合中所有元素之和,集合是由集合的所有子集组成的集合(1)若集合,写出和集合;(2)若集合中的元素都是正整数,且对任意的正整数、、、、,都存在集合,使得,则称集合具有性质①若集合,判断集合是否具有性质,并说明理由;②若集合具有性质,且,求的最小值及此时中元素的最大值的所有可能取值19.已知函数(1)求函数的最小正周期;(2)求函数在上的值域20.已知函数的最小值正周期是(1)求的值;(2)求函数的最大值,并且求使取得最大值的x的集合21.已知函数(其中)的图象上相邻两个最高点的距离为(Ⅰ)求函数的图象的对称轴;(Ⅱ)若函数在内有两个零点,求的取值范围及的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】判断与大小关系,即可得到答案.【详解】因为,,,所以.故选:C.【点睛】本题主要考查对数函数、指数函数的性质,关键是与中间量进行比较,然后得三个数的大小关系,属于基础题.2、C【解析】根据零点存在性定理即可求解.【详解】是上的增函数,又,函数的零点所在区间为,又,.故选:C.3、A【解析】根据解析式,由正切函数的性质求最小正周期即可.【详解】由解析式及正切函数的性质,最小正周期.故选:A.4、C【解析】cos(π2-α)=sin5、D【解析】对每个集合进行逐一检验,研究集合内的元素是否存在即可选出.【详解】选项A,;选项B,;选项C,;选项D,,方程无解,.选:D.6、C【解析】根据对数函数的单调性和中间数可得正确的选项.【详解】因为,故即,而,故,即,而,故,故即,故,故选:C7、C【解析】由三视图可知,该几何体为长方体上方放了一个直三棱柱,其体积为:.故选C点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图8、C【解析】先分析出的奇偶性,再得出的单调性,由单调性结合奇偶性解不等式得到,再利用均值不等式可得答案.【详解】的定义域满足,由,所以在上恒成立.所以的定义域为则所以,即为奇函数.设,由上可知为奇函数.当时,,均为增函数,则在上为增函数.所以在上为增函数.又为奇函数,则在上为增函数,且所以在上为增函数.所以在上为增函数.由,即所以对任意实数x恒成立即,由当且仅当,即时得到等号.所以故选:C9、D【解析】可根据已知的函数解析式,通过求解函数的定义域、奇偶性、单调性和与gx=【详解】函数fx=x②选项,因为fx=x选项③,在区间0,+∞时,fx=xx2+1=1x+1x,而函数选项④,可通过画出fx的图像与gx=1故选:D.10、B【解析】根据平面的基本性质和空间中两直线的位置关系,逐一判定,即可得到答案【详解】由题意,对于A中,在空间中两条直线没有公共点,则这两条直线平行或异面,所以不正确;对于B中,当一条直线在平面内时,此时直线与平面可能有无数个公共点,所以是正确的;对于C中,经过空间不共线的三点可以确定一个平面,所以是错误的;对于D中,若一个平面上有三个点到另一个平面的距离相等,则这两个平面平行或相交,所以不正确,故选B【点睛】本题主要考查了平面的基本性质和空间中两直线的位置关系,其中解答中熟记平面的基本性质和空间中两直线的位置关系是解答的关键,着重考查了推理与论证能力,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】解方程即可.【详解】令,可得,所以函数的零点为.故答案为:.【点睛】本题主要考查求函数的零点,属基础题.12、【解析】换元,,化简得到二次函数,根据二次函数性质得到最值.【详解】设,,则,,故当,即时,函数有最大值为.故答案为:.【点睛】本题考查了指数型函数的最值,意在考查学生的计算能力,换元是解题的关键.13、2【解析】直线与圆相切,圆心到直线的距离等于半径,列出方程即可求解的值【详解】依题意得,直线与圆相切所以,即,解得:,又,故答案为:214、2【解析】根据自变量的范围,由内至外逐层求值可解.【详解】又故答案为:2.15、【解析】由独立事件的乘法公式求解即可.【详解】由独立事件的乘法公式可知,两件都是正品的概率是.故答案为:16、①④【解析】①由,解得.可得函数单调增区间;②函数在定义域内不具有单调性;③由,即可得出函数的最小正周期;④利用诱导公式可得函数,即可得出奇偶性【详解】解:①由,解得.可知:函数的单调增区间是,,,故①正确;②函数在定义域内不具有单调性,故②不正确;③,因此函数的最小正周期是,故③不正确;④函数是偶函数,故④正确其中正确的是①④故答案为:①④【点睛】本题考查了三角函数的图象与性质,考查了推理能力与计算能力,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),它的对称中心为,(2)答案见解析.【解析】(1):根据二倍角与辅助角公式化简函数为一名一角即可求解;(2):根据五点法定义列表作图即可【小问1详解】∴函数的最小正周期;令,,解得,,可得它的对称中心为,【小问2详解】x0010018、(1),;(2)①有,理由见解析;②的最小值为,所有可能取值是、、、、.【解析】(1)根据题中定义可写出与;(2)(i)求得,取、、、、,找出对应的集合,使得,即可得出结论;(ii)设,不妨设,根据题中定义分析出、,,,,,然后验证当、、、、时,集合符合题意,即可得解.【小问1详解】解:由题中定义可得,.【小问2详解】解:(ⅰ)集合具有性质,理由如下:因为,所以当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;综上可得,集合具有性质;(ⅱ)设集合,不妨设因为为正整数,所以,因为存在使得,所以此时中不能包含元素、、、且,所以.所以因为存在使得,所以此时中不能包含元素及、、、且,所以,所以若,则、、,而,所以不存在,使得,所以若,则、、,而,所以不存在,使得,所以同理可知,,若,则,所以当时,若,则取,可知不存在,使得,所以,解得又因为,所以经检验,当、、、、时,集合符合题意所以最小值为,且集合中元素的最大值的所有可能取值是、、、、.【点睛】关键点点睛:本题考查集合的新定义问题,解题时充分抓住题中的新定义,结合反证法结合不等式的基本性质逐项推导,求出每一项的取值范围,进而求解.19、(1);(2).【解析】(1)利用降幂公式、辅助角公式,结合正弦型函数最小正周期公式进行求解即可;(2)结合(1)的结论,利用正弦型函数的单调性进行求解即可.【小问1详解】,函数的最小正周期为;【小问2详解】由,则,则,即,所以函数在上的值域为.20、(1);(2)最大值为,此时.【解析】(1)利用二倍角公式以及辅助角公式可得,再由即可求解.(2)由(1)知,,令,即可求解.【详解】(1)由题设,函数的最小正周期是,可得,所以;(2)由(1)知,当,即时,取得最大值1,所以函数的最大值为21、(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由题意,图象上相邻两个最高点的距离为,即周期,可得,即可求解对称轴;(Ⅱ)函数在,内有两个零点,,转化为函数与函数有两个交点,即可求解的范围;在,内有两个零
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026广东茂名市公安局滨海新区分局招聘警务辅助人员20人备考题库(第一次)及答案详解参考
- 2026中央档案馆国家档案局所属事业单位招聘工作人员1人备考题库带答案详解
- 2026新疆博尔塔拉州博乐市中西医结合医院面向全市选聘义务行风监督员备考题库有完整答案详解
- 2026上半年贵州事业单位联考贵州省地震局招聘5人备考题库及答案详解(新)
- 2026中国有色金属工业昆明勘察设计研究院社会招聘备考题库及答案详解(新)
- 2025 小学五年级科学下册星座的识别与命名规则课件
- 2026年智能农业自动化发展报告
- 2026年乡镇卫生院药品采购管理制度
- 教科研档案管理制度
- 《过敏性紫癜儿童护理干预中的中医护理方案研究》教学研究课题报告
- 装修工程施工质量检查标准
- 书馆数据管理制度规范
- 供销大集:中国供销商贸流通集团有限公司拟对威海集采集配商贸物流有限责任公司增资扩股所涉及的威海集采集配商贸物流有限责任公司股东全部权益价值资产评估报告
- 2025年延安市市直事业单位选聘(76人)考试参考试题及答案解析
- 干细胞临床研究:知情同意的伦理审查要点
- 2025-2026年人教版二年级上册语文期末考试卷及答案
- 检测实验室安全管理与操作规程
- 2025云南保山电力股份有限公司招聘(100人)笔试历年参考题库附带答案详解
- 档案管理操作规程及实施细则
- 寒假班安全协议书
- (新教材)2026年人教版八年级下册数学 21.1 四边形及多边形 课件
评论
0/150
提交评论