版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届甘肃省武威市第四中学数学高一下期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,在区间上为增函数的是().A. B. C. D.2.若正数满足,则的最小值为A. B.C. D.33.如图,函数与坐标轴的三个交点P,Q,R满足,,M为QR的中点,,则A的值为()A. B. C. D.4.已知为等差数列,为其前项和.若,则()A. B. C. D.5.若实数x,y满足条件,则目标函数z=2x-y的最小值()A. B.-1 C.0 D.26.已知中,,,若,则的坐标为()A. B. C. D.7.已知数列是各项均为正数且公比不等于的等比数列.对于函数,若数列为等差数列,则称函数为“保比差数列函数”.现有定义在上的如下函数:①;②;③;④,则为“保比差数列函数”的所有序号为()A.①② B.③④ C.①②④ D.②③④8.已知集合,,则()A. B. C. D.9.下列命题中正确的是()A.第一象限角必是锐角; B.相等的角终边必相同;C.终边相同的角相等; D.不相等的角其终边必不相同.10.已知向量,,,则与的夹角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知x,y满足,则z=2x+y的最大值为_____.12.某住宅小区有居民万户,从中随机抽取户,调查是否安装宽带,调查结果如下表所示:宽带租户业主已安装未安装则该小区已安装宽带的居民估计有______户.13.已知,且,则_____.14.经过点且在x轴上的截距等于在y轴上的截距的直线方程是________.15.已知数列是等比数列,若,,则公比________.16.抽样调查某地区名教师的年龄和学历状况,情况如下饼图:则估计该地区岁以下具有研究生学历的教师百分比为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(1)求的值;(2)求的值.18.某市食品药品监督管理局开展2019年春季校园餐饮安全检查,对本市的8所中学食堂进行了原料采购加工标准和卫生标准的检查和评分,其评分情况如下表所示:中学编号12345678原料采购加工标准评分x10095938382757066卫生标准评分y8784838281797775(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;(精确到0.1)(2)现从8个被检查的中学食堂中任意抽取两个组成一组,若两个中学食堂的原料采购加工标准和卫生标准的评分均超过80分,则组成“对比标兵食堂”,求该组被评为“对比标兵食堂”的概率.参考公式:,;参考数据:,.19.已知向量,满足,,且.(1)求;(2)在中,若,,求.20.某地统计局调查了10000名居民的月收入,并根据所得数据绘制了样本的频率分布直方图如图所示.(1)求居民月收入在[3000,3500)内的频率;(2)根据频率分布直方图求出样本数据的中位数;(3)为了分析居民的月收入与年龄、职业等方面的关系,必须按月收入再从这10000中用分层抽样的方法抽出100人做进一步分析,则应从月收入在[2500,3000)内的居民中抽取多少人?21.已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=23π(Ⅰ)若a、b、(Ⅱ)若c=3,∠ABC=θ,试用θ表示ΔABC
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:根据初等函数的图象,可得函数在区间(0,1)上的单调性,从而可得结论.解:由题意,A的底数大于0小于1、C是图象在一、三象限的单调减函数、D是余弦函数,,在(0,+∞)上不单调,B的底数大于1,在(0,+∞)上单调增,故在区间(0,1)上是增函数,故选B考点:函数的单调性点评:本题考查函数的单调性,掌握初等函数的图象与性质是关键.2、A【解析】
由,利用基本不等式,即可求解,得到答案.【详解】由题意,因为,则,当且仅当,即时等号成立,所以的最小值为,故选A.【点睛】本题主要考查了利用基本不等式求最小值问题,其中解答中合理构造,利用基本不是准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.3、D【解析】
用周期表示出点坐标,从而又可得点坐标,再求出点坐标后利用求得,得.【详解】记函数的周期,则,因为,∴,是中点,则,∴,解得,∴,由得,∵,∴,,,∴,故选:D.【点睛】本题考查求三角函数的解析式,掌握正弦函数的图象与性质是解题关键.4、D【解析】试题分析:设等差数列的公差为,由题意得,解得,所以,故答案为D.考点:1、数列的通项公式;2、数列的前项和.5、A【解析】
线性规划问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。【详解】可行域如图所示,当目标函数平移到A点时z取最小值,故选A【点睛】线性规划中线性的目标函数问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。6、A【解析】
根据,,可得;由可得M为BC中点,即可求得的坐标,进而利用即可求解.【详解】因为,所以因为,即M为BC中点所以所以所以选A【点睛】本题考查了向量的减法运算和线性运算,向量的坐标运算,属于基础题.7、C【解析】
①,为“保比差数列函数”;②,为“保比差数列函数”;③不是定值,不是“保比差数列函数”;④,是“保比差数列函数”,故选C.考点:等差数列的判定及对数运算公式点评:数列,若有是定值常数,则是等差数列8、A【解析】
首先求得集合,根据交集定义求得结果.【详解】本题正确选项:【点睛】本题考查集合运算中的交集运算,属于基础题.9、B【解析】
根据终边相同的角和象限角的定义,举反例或直接进行判断可得最后结果.【详解】是第一象限角,但不是锐角,故A错误;与终边相同,但他们不相等,故C错误;与不相等,但他们的终边相同,故D错误;因为角的始边在x轴的非负半轴上,则相等的角终边必相同,故B正确.故选:B【点睛】本题考查了终边相同的角和象限角的定义,利用定义举出反例进行判断是解决本题的关键.10、D【解析】
直接利用向量的数量积转化求解向量的夹角即可.【详解】因为,所以与的夹角为.故选:D.【点睛】本题主要考查向量的夹角的运算,以及运用向量的数量积运算和向量的模.二、填空题:本大题共6小题,每小题5分,共30分。11、1.【解析】
先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大值即可.【详解】解:,在坐标系中画出图象,三条线的交点分别是,,,在中满足的最大值是点,代入得最大值等于1.故答案为:1.【点睛】本题是考查线性规划问题,本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.12、【解析】
计算出抽样中已安装宽带的用户比例,乘以总人数,求得小区已安装宽带的居民数.【详解】抽样中已安装宽带的用户比例为,故小区已安装宽带的居民有户.【点睛】本小题主要考查用样本估计总体,考查频率的计算,属于基础题.13、【解析】
首先根据已知条件求得的值,平方后利用同角三角函数的基本关系式求得的值.【详解】由得,两边平方并化简得,由于,所以.而,由于,所以【点睛】本小题主要考查同角三角函数的基本关系式,考查两角和的正弦公式,考查化归与转化的数学思想方法,属于基础题.14、或【解析】
当直线不过原点时,设直线的方程为,把点代入求得的值,即可求得直线方程,当直线过原点时,直线的方程为,综合可得答案.【详解】当直线不过原点时,设直线的方程为,把点代入可得:,即此时直线的方程为:当直线过原点时,直线的方程为,即综上可得:满足条件的直线方程为:或故答案为:或【点睛】过原点的直线横纵截距都为0,在解题的时候容易漏掉.15、【解析】
利用等比数列的通项公式即可得出.【详解】∵数列是等比数列,若,,则,解得,即.故答案为:【点睛】本题考查了等比数列的通项公式,考查了计算能力,属于基础题.16、【解析】
根据饼状图中的岁以下本科学历人数和占比可求得岁以下教师总人数,从而可得其中的具有研究生学历的教师人数,进而得到所求的百分比.【详解】由岁以下本科学历人数和占比可知,岁以下教师总人数为:人岁以下有研究生学历的教师人数为:人岁以下有研究生学历的教师的百分比为:本题正确结果:【点睛】本题考查利用饼状图计算总体中的数据分布和频率分布的问题,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)利用同角三角函数的平方关系可求出的值,然后再利用同角三角函数的商数关系可求出的值;(2)在分式分子和分母中同时除以,将所求分式转化为含的分式求解,代值计算即可.【详解】(1),,因此,;(2)原式.【点睛】本题考查同角三角函数的商数关系求值,同时也考查了弦化切思想的应用,解题时要熟悉弦化切所适用的基本情形,考查计算能力,属于基础题.18、(1);(2)【解析】
(1)由题意计算、,求出回归系数,写出线性回归方程;(2)用列举法写出基本事件数,计算所求的概率值.【详解】(1)由题意得:,,,.故所求的线性回归方程为:.(2)从8个中学食堂中任选两个,共有共28种结果:,,,,,,,,,,,,,,,,,,,,,,,,,,,.其中原料采购加工标准的评分和卫生标准的评分均超过80分的有10种结果:,,,,,,,,,,所以该组被评为“对比标兵食堂”的概率为.【点睛】本题考查了线性回归方程的求解,考查了利用列举法求古典概型的概率问题,是基础题.19、(1)(2)【解析】
(1)将展开得到答案.(2),平方计算得到答案.【详解】解:(1)因为所以,,所以,,又夹角在上,∴;(2)因为,所以,,所以,边的长度为.【点睛】本题考查了向量的夹角,向量的加减计算,意在考查学生的计算能力.20、(1)0.15(2)2400(3)25人【解析】
(1)由频率分布直方图计算可得月收入在[3000,3500)内的频率;(2)分别计算小长方形的面积值,利用中位数的特点即可确定中位数的值;(3)首先确定10000人中月收入在[2500,3000]内的人数,然后结合分层抽样的特点可得应抽取的人数.【详解】(1)居民月收入在[3000,3500]内的频率为(2)因为,,,,所以样本数据的中位数为.(3)居民月收入在[2500,3000]内的频率为,所以这10000人中月收入在[2500,3000]内的人数为.从这10000人中用分层抽样的方法抽出100人,则应从月收入在[2500,3000]内的居民中抽取(人).【点睛】利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.21、(1)c=7或c=2.(1)=2sinθ+2【解析】试题分析:(Ⅰ)由题意可得a=c-4、b=c-1.又因∠MCN=π,,可得恒等变形得c1-9c+14=0,再结合c>4,可得c的值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论