版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省大庆市2026届数学高一下期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,则a,b,c的大小关系为()A. B. C. D.2.的内角,,的对边分别为,,.已知,则()A. B. C. D.3.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s1,s2分别表示甲、乙选手分数的标准差,则s1与s2的关系是().A.s1>s2 B.s1=s2 C.s1<s2 D.不确定4.在中,角A、B、C所对的边分别为a、b、c,且若,则的形状是()A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形5.在等差数列中,若,则的值为()A.15 B.21 C.24 D.186.已知等差数列的公差为2,且是与的等比中项,则等于()A. B. C. D.7.我国魏晋时期的数学家刘徽,创立了用圆内接正多边形面积无限逼近圆面积的方法,称为“割圆术”,为圆周率的研究提供了科学的方法.在半径为1的圆内任取一点,则该点取自圆内接正十二边形外的概率为A. B.C. D.8.已知,,,则的最小值为A. B. C. D.49.若,则在中,正数的个数是()A.16 B.72 C.86 D.10010.设向量,,则是的A.充分不必要条件 B.充分必要条件C.必要不充分条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集为_______________.12.按照如图所示的程序框图,若输入的x值依次为,0,1,运行后,输出的y值依次为,,,则________.13.圆与圆的公共弦长为______________。14.在中,若,,,则________.15.在平面直角坐标系中,定义两点之间的直角距离为:现有以下命题:①若是轴上的两点,则;②已知,则为定值;③原点与直线上任意一点之间的直角距离的最小值为;④若表示两点间的距离,那么.其中真命题是__________(写出所有真命题的序号).16.如图,两个正方形,边长为2,.将绕旋转一周,则在旋转过程中,与平面的距离最大值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.自变量在什么范围取值时,函数的值等于0?大于0呢?小于0呢?18.如图,在四棱柱中,底面ABCD为菱形,平面ABCD,AC与BD交于点O,,,.(1)证明:平面平面;(2)求二面角的大小.19.设是两个相互垂直的单位向量,且(Ⅰ)若,求的值;(Ⅱ)若,求的值.20.已知圆(为坐标原点),直线.(1)过直线上任意一点作圆的两条切线,切点分别为,求四边形面积的最小值.(2)过点的直线分别与圆交于点(不与重合),若,试问直线是否过定点?并说明理由.21.已知函数.(1)求的最小正周期;(2)求在区间上的最大值和最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由,,,得解.【详解】解:因为,,,所以,故选:D.【点睛】本题考查了指数幂,对数值的大小关系,属基础题.2、A【解析】
由正弦定理,整理得到,即可求解,得到答案.【详解】在中,因为,由正弦定理可得,因为,则,所以,即,又因为,则,故选A.【点睛】本题主要考查了正弦定理的应用,其中解答中熟练应用正弦定理的边角互化,以及特殊角的三角函数是解答的关键,着重考查了推理与运算能力,属于基础题.3、C【解析】
先求均值,再根据标准差公式求标准差,最后比较大小.【详解】乙选手分数的平均数分别为所以标准差分别为因此s1<s2,选C.【点睛】本题考查标准差,考查基本求解能力.4、C【解析】
直接利用余弦定理的应用求出A的值,进一步利用正弦定理得到:b=c,最后判断出三角形的形状.【详解】在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.则:,由于:0<A<π,故:A.由于:sinBsinC=sin2A,利用正弦定理得:bc=a2,所以:b2+c2﹣2bc=0,故:b=c,所以:△ABC为等边三角形.故选C.【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.5、D【解析】
利用等差数列的性质,将等式全部化为的形式,再计算。【详解】因为,且,则,所以.故选D【点睛】本题考查等差数列的性质,属于基础题。6、A【解析】
直接利用等差数列公式和等比中项公式得到答案.【详解】是与的等比中项,故即解得:故选:A【点睛】本题考查了等差数列和等比中项,属于常考题型.7、D【解析】
由半径为1的圆内接正十二边形,可分割为12个顶角为,腰为1的等腰三角形,求得十二边形的面积,利用面积比的几何概型,即可求解.【详解】由题意,半径为1的圆内接正十二边形,可分割为12个顶角为,腰为1的等腰三角形,所以该正十二边形的面积为,由几何概型的概率计算公式,可得所求概率,故选D.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力.8、C【解析】
化简条件得,化简,利用基本不等式,即可求解,得到答案.【详解】由题意,知,可得,则,当且仅当时,即时取得等号,所以,即的最小值为,故选C.【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件:一正、二定、三相等是解答的关键,着重考查了推理与运算能力,属于基础题.9、C【解析】
令,则,当1≤n≤14时,画出角序列终边如图,其终边两两关于x轴对称,故有均为正数,而,由周期性可知,当14k-13≤n≤14k时,Sn>0,而,其中k=1,2,…,7,所以在中有14个为0,其余都是正数,即正数共有100-14=86个,故选C.10、C【解析】
利用向量共线的性质求得,由充分条件与必要条件的定义可得结论.【详解】因为向量,,所以,即可以得到,不能推出,是“”的必要不充分条件,故选C.【点睛】本题主要考查向量共线的性质、充分条件与必要条件的定义,属于中档题.利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】.12、5【解析】
根据程序框图依次计算出、、后即可得解.【详解】由程序框图可知,;,;,.所以.故答案为:.【点睛】本题考查了程序框图的应用,属于基础题.13、【解析】
利用两圆一般方程求两圆公共弦方程,求其中一圆到公共弦的距离,利用直线被圆截得的弦长公式可得所求.【详解】由两圆方程相减得两圆公共弦方程为,即,圆化为,圆心到直线的距离为1,所以两圆公共弦长为,故答案为.【点睛】本题考查两圆位置关系,直线与圆的位置关系,考查运算能力,属于基本题.14、2;【解析】
利用余弦定理可构造关于的方程,解方程求得结果.【详解】由余弦定理得:解得:或(舍)本题正确结果:【点睛】本题考查利用余弦定理解三角形,属于基础题.15、①②④【解析】
根据新定义的直角距离,结合具体选项,进行逐一分析即可.【详解】对①:因为是轴上的两点,故,则,①正确;对②:根据定义因为,故,②正确;对③:根据定义,当且仅当时,取得最小值,故③错误;对④:因为,由不等式,即可得,故④正确.综上正确的有①②④故答案为:①②④.【点睛】本题考查新定义问题,涉及同角三角函数关系,绝对值三角不等式,属综合题.16、【解析】
绕旋转一周得到的几何体是圆锥,点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像,根据图像判断出圆的下顶点距离平面的距离最大,解三角形求得这个距离的最大值.【详解】绕旋转一周得到的几何体是圆锥,故点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像如下图所示,根据图像作法可知,当位于圆心的正下方点位置时,到平面的距离最大.在平面内,过作,交于.在中,,.所以①.其中,,所以①可化为.故答案为:【点睛】本小题主要考查旋转体的概念,考查空间点到面的距离的最大值的求法,考查空间想象能力和运算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、当或时,函数的值等于0;当时,函数的值大于0;当或时,函数的值小于0.【解析】
将问题转化为解方程和解不等式,以及,分别求解即可.【详解】由题:由得:或;由得:;由得:或,综上所述:当或时,函数的值等于0;当时,函数的值大于0;当或时,函数的值小于0.【点睛】此题考查解二次方程和二次不等式,关键在于熟练掌握二次方程和二次不等式的解法,准确求解.18、(1)证明见解析;(2)﹒【解析】
(1)证面面垂直只需证一个平面内有一条直线和另一个平面垂直(2)通过作图需找二面角的平面角即可【详解】(1)证明:由平面ABCD,有;由四边形ABCD为菱形,所以AC⊥BD:又因为,所以平面,因为平面,所以平面平面,(2)过O作于E,连结BE,由(1)知平面,所以,又因为,,所以平面BDE,从而;由,,所以∠OEB为二面角的平面角.由为等边三角形且O为BD中点,有,,,由,有,由,有,从而.在中,,所以,即.综上,二面角的大小为﹒【点睛】面面垂直可通过线面垂直进行证明,二面角的平面角有正有负,解题时要注意结合题设关系进行正确判断19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ),则存在唯一的使,解得所求参数的值;(Ⅱ)若,则,解得所求参数的值.【详解】解:(Ⅰ)若,则存在唯一的,使,,当时,;(Ⅱ)若,则,因为是两个相互垂直的单位向量,当时,.【点睛】本题考查两个向量平行、垂直的性质,两个向量的数量积公式的应用.20、(1)12;(2)过定点,理由见解析【解析】
(1)由,得过点的切线长,所以四边形的面积为,即可得到本题答案;(2)设直线的方程为,则直线的方程为.联立方程,消去,整理得,得,,所以,令,即可得到本题答案.【详解】(1)由题意可得圆心到直线的距离为,从而,则过点的切线长.故四边形的面积为,即四边形面积的最小值为12.(2)因为,所以直线与直线的斜率都存在,且不为0.设直线的方程为,则直线的方程为.联立方程,消去,整理得解得或,则.同理可得.所以.令,得,解得.取,可以证得,所以直线过定点.当时,轴,易知与均为正三角形,直线的方程为,也过定点.综上,直线过定点.【点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中医药考试中药药理学中药配方综合选择题
- 2026年注册会计师考试税法题目及答案详解
- 2026年工程材料及实验技能操作题库专业篇
- 2026年生物医药研发与质量管理主管级考试预测题集
- 2026年公共政策分析与执行能力题库
- 2026年财务报表分析与编制试题及答案
- 2026年全民科学素质竞赛知识性试题及答案
- 2026年语文文言文阅读理解与赏析练习题
- 2026年软件系统测试专业考试题目软件质量保障技术
- 2026年环境科学基本概念及原理试题集
- (一模)济南市2026届高三第一次模拟考试生物试卷(含答案)
- (16区全套) 上海市16区2026届初三一模化学试卷合集(含答案)
- 2026年太原城市职业技术学院单招综合素质考试题库必考题
- 2025-2026学年北京市海淀区初二(上期)期末物理试卷(含答案)
- 2026年医疗器械行业分析报告及未来五至十年行业发展报告
- 房产纠纷诉讼书范文(合集8篇)
- 2025企业年会总结大会跨越新起点模板
- 高职“大学语文”一体化改革
- FZ∕T 74002-2014 运动文胸行业标准
- 房地产营销费效分析
- (常州卷)江苏省常州市2023-2024学年四年级上学期期末考试质量调研数学试卷一(苏教版)
评论
0/150
提交评论