版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省铜仁伟才实验学校2026届数学高一下期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,,则()A. B. C. D.2.设等比数列的前项和为,若,则()A. B.2 C. D.3.已知三条相交于一点的线段两两垂直且在同一平面内,在平面外、平面于,则垂足是的()A.内心 B.外心 C.重心 D.垂心4.下列函数中周期为,且图象关于直线对称的函数是()A. B.C. D.5.已知扇形的圆心角为120°,半径为6,则扇形的面积为()A. B. C. D.6.若,,与的夹角为,则的值是()A. B. C. D.7.在锐角中,内角,,的对边分别为,,,若,则等于()A. B. C. D.8.已知,下列不等式中成立的是()A. B. C. D.9.集合,则()A. B. C. D.10.设点是函数图象士的任意一点,点满足,则的最小值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点,,若直线与线段有公共点,则实数的取值范围是____________.12.已知等比数列的公比为2,前n项和为,则=______.13.计算:=_______________.14.函数且的图象恒过定点A,若点A在直线上(其中m,n>0),则的最小值等于__________.15.直线和将单位圆分成长度相等的四段弧,则________.16.等差数列的前项和为,,,等比数列满足,.(1)求数列,的通项公式;(2)求数列的前15项和.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的首项.(1)证明:数列是等比数列;(2)数列的前项和.18.如图,三棱柱的侧面是边长为的菱形,,且.(1)求证:;(2)若,当二面角为直二面角时,求三棱锥的体积.19.如图长方体中,,分别为棱,的中点(1)求证:平面平面;(2)请在答题卡图形中画出直线与平面的交点(保留必要的辅助线),写出画法并计算的值(不必写出计算过程).20.智能手机的出现,改变了我们的生活,同时也占用了我们大量的学习时间.某市教育机构从名手机使用者中随机抽取名,得到每天使用手机时间(单位:分钟)的频率分布直方图(如图所示),其分组是:,.(1)根据频率分布直方图,估计这名手机使用者中使用时间的中位数是多少分钟?(精确到整数)(2)估计手机使用者平均每天使用手机多少分钟?(同一组中的数据以这组数据所在区间中点的值作代表)(3)在抽取的名手机使用者中在和中按比例分别抽取人和人组成研究小组,然后再从研究小组中选出名组长.求这名组长分别选自和的概率是多少?21.已知不等式的解集为或.(1)求实数a,b的值;(2)解不等式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
直接用正弦定理直接求解边.【详解】在中,,,由余弦定理有:,即故选:D【点睛】本题考查利用正弦定理解三角形,属于基础题.2、C【解析】
根据等比数列前项和为带入即可。【详解】当时,不成立。当时,则,选择C【点睛】本题主要考查了等比数列的前项和,,属于基础题。3、D【解析】
根据题意,结合线线垂直推证线面垂直,以及根据线面垂直推证线线垂直,即可求解。【详解】连接BH,延长BH与AC相交于E,连接AH,延长AH交BC于D,作图如下:因为,故平面PBC,又平面PBC,故;因为平面ABC,平面ABC,故;又平面PAH,平面PAH故平面PAH,又平面PAH,故,即;同理可得:,又BE与AD交于点H,故H点为的垂心.故选:D.【点睛】本题考查线线垂直与线面垂直之间的相互转化,属综合中档题.4、B【解析】因为,所以选项A,B,C,D的周期依次为又当时,选项A,B,C,D的值依次为所以只有选项A,B关于直线对称,因此选B.考点:三角函数性质5、C【解析】
根据扇形的面积公式即可求得.【详解】解:由题意:,所以扇形的面积为:故选:C【点睛】本题考查扇形的面积公式,考查运算求解能力,核心是记住公式.6、C【解析】
由题意可得||•||•cos,,再利用二倍角公式求得结果.【详解】由题意可得||•||•cos,2sin15°4cos15°cos30°=2sin60°,故选:C.【点睛】本题主要考查两个向量的数量积的定义,二倍角公式的应用属于基础题.7、D【解析】
由正弦定理将边化角可求得,根据三角形为锐角三角形可求得.【详解】由正弦定理得:,即故选:【点睛】本题考查正弦定理边化角的应用问题,属于基础题.8、A【解析】
逐个选项进行判断即可.【详解】A选项,因为,所以.当时即不满足选项B,C,D.故选A.【点睛】此题考查不等式的基本性质,是基础题.9、C【解析】
先求解不等式化简集合A和B,再根据集合的交集运算求得结果即可.【详解】因为集合,集合或,所以.故本题正确答案为C.【点睛】本题考查一元二次不等式,分式不等式的解法和集合的交集运算,注意认真计算,仔细检查,属基础题.10、B【解析】
函数表示圆位于x轴下面的部分。利用点到直线的距离公式,求出最小值。【详解】函数化简得。圆心坐标,半径为2.所以【点睛】本题考查点到直线的距离公式,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据直线方程可确定直线过定点;求出有公共点的临界状态时的斜率,即和;根据位置关系可确定的范围.【详解】直线可整理为:直线经过定点,又直线的斜率为的取值范围为:本题正确结果:【点睛】本题考查根据直线与线段的交点个数求解参数范围的问题,关键是能够明确直线经过的定点,从而确定临界状态时的斜率.12、【解析】由等比数列的定义,S4=a1+a2+a3+a4=+a2+a2q+a2q2,得+1+q+q2=.13、【解析】试题分析:考点:两角和的正切公式点评:本题主要考查两角和的正切公式变形的运用,抓住和角是特殊角,是解题的关键.14、1【解析】
由题意可得定点,,把要求的式子化为,利用基本不等式求得结果.【详解】解:且令解得,则即函数过定点,又点在直线上,,则,当且仅当时,等号成立,故答案为:1.【点睛】本题考查基本不等式的应用,函数图象过定点问题,把要求的式子化为,是解题的关键,属于基础题.15、0【解析】
将单位圆分成长度相等的四段弧,每段弧对应的圆周角为,计算得到答案.【详解】如图所示:将单位圆分成长度相等的四段弧,每段弧对应的圆周角为或故答案为0【点睛】本题考查了直线和圆相交问题,判断每段弧对应的圆周角为是解题的关键.16、(1),;(2)125.【解析】
(1)直接利用等差数列,等比数列的公式得到答案.(2),前5项为正,后面为负,再计算数列的前15项和.【详解】解:(1)联立,解得,,故,,联立,解得,故.(2).【点睛】本题考查了等差数列,等比数列,绝对值和,判断数列的正负分界处是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】试题分析:(1)对两边取倒数得,化简得,所以数列是等比数列;(2)由(1)是等比数列.,求得,利用错位相减法和分组求和法求得前项和.试题解析:(1),又,数列是以为首项,为公比的等比数列.(2)由(1)知,,即,设,①则,②由①-②得,.又.数列的前项和.考点:配凑法求通项,错位相减法.18、(1)见解析(2)【解析】
(1)利用直线与平面垂直的判定,结合三角形全等判定,得到,再次结合三角形全等,即可.(2)法一:建立坐标系,分别计算的法向量,结合两向量夹角为直角,计算出的值,然后结合,即可.法二:设出OA=x,用x分别表示AB,BD,AD,结合,建立方程,计算x,结合,即可.【详解】(1)连结,交于点,连结,因为侧面是菱形,所以,又因为,,所以平面,而平面,所以,因为,所以,而,所以,.(2)因为,,所以,(法一)以为坐标原点,所以直线为轴,所以直线为轴,所以直线为轴建立如图所示空间直角坐标系,设,则,,,,,所以,,,设平面的法向量,所以令,则,,取,设平面的法向量,所以令,则,,取,依题意得,解得.所以.(法二)过作,连结,由(1)知,所以且,所以是二面角的平面角,依题意得,,所以,设,则,,又由,,所以由,解得,所以.【点睛】本道题考查了直线与平面垂直判定,考查了利用空间向量解决二面角问题,难度较难.19、(1)见证明;(2);画图见解析【解析】
(1)推导出平面,得出,得出,从而得到,进而证出平面,由此证得平面平面.(2)根据通过辅助线推出线面平行再推出线线平行,再根据“一条和平面不平行的直线与平面的公共点即为直线与平面的交点”得到点位置,然后计算的值.【详解】(1)证明:在长方体中,,分别为棱,的中点,所以平面,则,在中,,在中,,所以,因为在中,,所以,所以,又因为,所以平面,因为平面,所以平面平面(2)如图所示:设,连接,取中点记为,过作,且,则.证明:因为为中点,所以且;又因为,且,所以且,所以四边形为平行四边形,则;又因为,所以,且平面,所以平面;又因为,则,平面,即点为直线与平面的交点;因为,所以,则;且有上述证明可知:四边形为平行四边形,所以,所以,因为,.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.20、(1)分钟.(2)58分钟;(3)【解析】
(1)根据中位数将频率二等分可直接求得结果;(2)每组数据中间值与对应小矩形的面积乘积的总和即为平均数;(3)采用列举法分别列出所有基本事件和符合题意的基本事件,根据古典概型概率公式求得结果.【详解】(1)设中位数为,则解得:(分钟)这名手机使用者中使用时间的中位数是分钟(2)平均每天使用手机时间为:(分钟)即手机使用者平均每天使用手机时间为分钟(3)设在内抽取的两人分别为,在内抽取的三人分别为,则从五人中选出两人共有以下种情况:两名组长分别选自和的共有以下种情况:所求概率【点睛】本题考查根据频率分布直方图计算平均数和中位数、古典概型概率问题的求解;关键是能够明确平均数和中位数的估算原理,从而计算得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 碘缺乏健康知识讲座课件
- 短歌行课件曹操
- 2026年机械设计基础模拟考试试题
- 2026年智能交通系统设计与实施案例题集含智能交通控制技术
- 2026年环境保护法规遵守及措施执行情况测试题
- 2026年经济法规与税法知识笔试模拟题
- 2026年会计实务操作与财务分析进阶题集
- 2026年化工设备安全操作考试题及答案解析
- 2026年程序员高效编程技能进阶试题集
- 2026年人力资源培训效果测试题人事管理知识检测题目
- Web3创作者经济演进研究
- 河北省邢台市2025-2026学年七年级上学期期末考试历史试卷(含答案)
- (2025年)新疆公开遴选公务员笔试题及答案解析
- 《老年服务礼仪与沟通技巧》-《老年服务礼仪与沟通技巧》-老年服务礼仪与沟通技巧
- 八年级数学人教版下册第十九章《二次根式》单元测试卷(含答案)
- (2025年)广东省事业单位集中招聘笔试试题及答案解析
- 深学细悟四中全会精神凝聚奋进“十五五”新征程磅礴力量
- 市场监督管理局2025年制售假劣肉制品专项整治工作情况的报告范文
- 《二氧化碳转化原理与技术》课件 第9章 二氧化碳电催化转化
- 经济学基础 第5版 自测试卷B及答案
- 旧城区改造项目开发合作合同协议书范本
评论
0/150
提交评论