河北省邢台一中、邢台二中2026届高一下数学期末综合测试模拟试题含解析_第1页
河北省邢台一中、邢台二中2026届高一下数学期末综合测试模拟试题含解析_第2页
河北省邢台一中、邢台二中2026届高一下数学期末综合测试模拟试题含解析_第3页
河北省邢台一中、邢台二中2026届高一下数学期末综合测试模拟试题含解析_第4页
河北省邢台一中、邢台二中2026届高一下数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省邢台一中、邢台二中2026届高一下数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,若,则的形状是()A.钝角三角形 B.直角三角形C.锐角三角形 D.不能确定2.圆关于直线对称,则的值是()A. B. C. D.3.若不等式对实数恒成立,则实数的取值范围()A.或 B.C. D.4.已知等差数列的公差为2,且是与的等比中项,则等于()A. B. C. D.5.如图是棱长为的正方体的平面展开图,则在这个正方体中直线所成角的大小为()A. B. C. D.6.已知某区中小学学生人数如图所示,为了解学生参加社会实践活动的意向,拟采用分层抽样的方法来进行调查。若高中需抽取20名学生,则小学与初中共需抽取的人数为()A.30 B.40 C.70 D.907.在中,若,则是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形8.给出下列四个命题:①垂直于同一条直线的两条直线互相平行;②平行于同一条直线的两条直线平行;③若直线满足,则;④若直线,是异面直线,则与,都相交的两条直线是异面直线.其中假命题的个数是()A.1 B.2 C.3 D.49.已知点G为的重心,若,,则=()A. B. C. D.10.已知两个正数a,b满足,则的最小值是(

)A.2 B.3 C.4 D.5二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的首项,其前项和为,且,若单调递增,则的取值范围是__________.12.已知,且,则________.13.若,且,则__________.14.若,,则的值为______.15.若、为单位向量,且,则向量、的夹角为_______.(用反三角函数值表示)16.如图,长方体中,,,,与相交于点,则点的坐标为______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角,,的对边分别为,,,已知向量,,且.(1)求角的值;(2)若为锐角三角形,且,求的取值范围.18.已知三角形的三个顶点.(1)求BC边所在直线的方程;(2)求BC边上的高所在直线方程.19.设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.20.已知函数.(1)求函数的值域和单调减区间;(2)已知为的三个内角,且,,求的值.21.如图,在平面四边形中,,,,,.(1)求的长;(2)求的长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由正弦定理得,再由余弦定理求得,得到,即可得到答案.【详解】因为在中,满足,由正弦定理知,代入上式得,又由余弦定理可得,因为C是三角形的内角,所以,所以为钝角三角形,故选A.【点睛】本题主要考查了利用正弦定理、余弦定理判定三角形的形状,其中解答中合理利用正、余弦定理,求得角C的范围是解答本题的关键,着重考查了推理与运算能力,属于基础题.2、B【解析】圆关于直线对称,所以圆心(1,1)在直线上,得.故选B.3、C【解析】

对m分m≠0和m=0两种情况讨论分析得解.【详解】由题得时,x<0,与已知不符,所以m≠0.当m≠0时,,所以.综合得m的取值范围为.故选C【点睛】本题主要考查一元二次不等式的恒成立问题,意在考查学生对该知识的理解掌握水平和分析推理能力.4、A【解析】

直接利用等差数列公式和等比中项公式得到答案.【详解】是与的等比中项,故即解得:故选:A【点睛】本题考查了等差数列和等比中项,属于常考题型.5、C【解析】

根据异面直线所成的角的定义,先作其中一条的平行线,作出异面直线所成的角,然后求解.【详解】如图所示:在正方体中,,所以直线所成角,由正方体的性质,知,所以.故选:C【点睛】本题主要考查了异面直线所成的角,还考查了推理论证的能力,属于基础题.6、C【解析】

根据高中抽取的人数和高中总人数计算可得抽样比;利用小学和初中总人数乘以抽样比即可得到结果.【详解】由题意可得,抽样比为:则小学和初中共抽取:人本题正确选项:【点睛】本题考查分层抽样中样本数量的求解,关键是能够明确分层抽样原则,准确求解出抽样比,属于基础题.7、A【解析】

首先根据降幂公式把等式右边降幂你,再根据把换成与的关系,进一步化简即可.【详解】,,,选A.【点睛】本题主要考查了二倍角,两角和与差的余弦等,需熟记两角和与差的正弦余弦等相关公式,以及特殊三角函数的值是解决本题的关键,属于基础题.8、B【解析】

利用空间直线的位置关系逐一分析判断得解.【详解】①为假命题.可举反例,如a,b,c三条直线两两垂直;②平行于同一条直线的两条直线平行,是真命题;③若直线满足,则,是真命题;④是假命题,如图甲所示,c,d与异面直线,交于四个点,此时c,d异面,一定不会平行;当点B在直线上运动(其余三点不动),会出现点A与点B重合的情形,如图乙所示,此时c,d共面且相交.故答案为B【点睛】本题主要考查空间直线的位置关系,意在考查学生对该知识的理解掌握水平和分析推理能力.9、B【解析】

由重心分中线为,可得,又(其中是中点),再由向量的加减法运算可得.【详解】设是中点,则,又为的重心,∴.故选B.【点睛】本题考查向量的线性运算,解题关键是掌握三角形重心的性质,即重心分中线为两段.10、D【解析】

根据题意,分析可得,对其变形可得,由基本不等式分析可得答案.【详解】解:根据题意,正数,满足,则;即的最小值是;故选:.【点睛】本题考查基本不等式的性质以及应用,关键是掌握基本不等式应用的条件.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由可得:两式相减得:两式相减可得:数列,,...是以为公差的等差数列,数列,,...是以为公差的等差数列将代入及可得:将代入可得要使得,恒成立只需要即可解得则的取值范围是点睛:本题考查了数列的递推关系求通项,在含有的条件中,利用来求通项,本题利用减法运算求出数列隔一项为等差数列,结合和数列为增数列求出结果,本题需要利用条件递推,有一点难度.12、【解析】试题分析:由得:解方程组:得:或因为,所以所以不合题意,舍去所以,所以,答案应填:.考点:同角三角函数的基本关系和两角差的三角函数公式.13、【解析】根据三角函数恒等式,将代入得到,又因为,故得到故答案为。14、【解析】

求出,将展开即可得解.【详解】因为,,所以,所以.【点睛】本题主要考查了三角恒等式及两角和的正弦公式,考查计算能力,属于基础题.15、.【解析】

设向量、的夹角为,利用平面向量数量积的运算律与定义计算出的值,利用反三角函数可求出的值.【详解】设向量、的夹角为,由平面向量数量积的运算律与定义得,,,因此,向量、的夹角为,故答案为.【点睛】本题考查利用平面向量的数量积计算平面向量所成的夹角,解题的关键就是利用平面向量数量积的定义和运算律,考查运算求解能力,属于中等题.16、【解析】

易知是的中点,求出的坐标,根据中点坐标公式求解.【详解】可知,,由中点坐标公式得的坐标公式,即【点睛】本题考查空间直角坐标系和中点坐标公式,空间直角坐标的读取是易错点.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)根据和正弦定理余弦定理求得.(2)先利用正弦定理求出R=1,再把化成,再利用三角函数的图像和性质求解.【详解】(1)因为,所以,由正弦定理化角为边可得,即,由余弦定理可得,又,所以.(2)由(1)可得,设的外接圆的半径为,因为,,所以,则,因为为锐角三角形,所以,即,所以,所以,所以,故的取值范围为.【点睛】(1)本题主要考查正弦定理余弦定理解三角形,考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)对于复合函数的问题自然是利用复合函数的性质解答,求复合函数的最值,一般从复合函数的定义域入手,结合三角函数的图像一步一步地推出函数的最值.18、(1)(2)【解析】

(1)由已知条件结合直线的两点式方程的求法求解即可;(2)先求出直线BC的斜率,再求出BC边上的高所在直线的斜率,然后利用直线的点斜式方程的求法求解即可.【详解】解:(1),,直线BC的方程为,即.(2),直线BC边上的高所在的直线的斜率为,又,直线BC边上的高的方程为:,即BC边上的高所在直线方程为.【点睛】本题考查了直线的两点式方程的求法,重点考查了直线的位置关系及直线的点斜式方程的求法,属基础题.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得的通项公式;(Ⅱ)首先求得的表达式,然后结合二次函数的性质可得其最小值.【详解】(Ⅰ)设等差数列的公差为,因为成等比数列,所以,即,解得,所以.(Ⅱ)由(Ⅰ)知,所以;当或者时,取到最小值.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.20、(1),;(2).【解析】

(1)将函数化简,利用三角函数的取值范围的单调性得到答案.(2)通过函数计算,,再计算代入数据得到答案.【详解】(1)∵且∴故所求值域为由得:所求减区间:;(2)∵是的三个内角,,∴∴又,即又∵,∴,故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论