版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省省级示范高中联合体2026届数学高一下期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为()A.30° B.45° C.60° D.90°2.将一边长为2的正方形沿对角线折起,若顶点落在同一个球面上,则该球的表面积为()A. B. C. D.3.函数在上的图像大致为()A. B.C. D.4.设为等比数列,给出四个数列:①,②,③,④.其中一定为等比数列的是()A.①③ B.②④ C.②③ D.①②5.半径为的半圆卷成一个圆锥,它的体积是()A. B. C. D.6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,87.点(4,0)关于直线5x+4y+21=0的对称点是().A.(-6,8) B.(-8,-6) C.(6,8) D.(-6,-8)8.函数的最小值和最大值分别为()A. B. C. D.9.某公司为激励创新,计划逐年加大研发奖金投入,若该公司年全年投入研发奖金万元,在此基础上,每年投入的研发奖金比上一年增长,则该公司全年投入的研发奖金开始超过万元的年份是()(参考数据:,,)A.年 B.年 C.年 D.年10.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°二、填空题:本大题共6小题,每小题5分,共30分。11.已知,若角的终边经过点,求的值.12.已知数列是等比数列,公比为,且,,则_________.13.函数的最大值是__________.14.设向量与向量共线,则实数等于__________.15.将函数的图象上每一点的横坐标缩短为原来的一半,纵坐标不变;再向右平移个单位长度得到的图象,则_________.16.若在上是减函数,则的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点,,点为曲线上任意一点且满足(1)求曲线的方程;(2)设曲线与轴交于两点,点是曲线上异于的任意一点,直线分别交直线:于点,试问轴上是否存在一个定点,使得?若存在,求出点的坐标;若不存在,请说明理由.18.如图所示,在平面四边形中,为正三角形.(1)在中,角的对边分别为,若,求角的大小;(2)求面积的最大值.19.在中,分别是角的对边,.(1)求的值;(2)若的面积,,求的值.20.如图,在三棱锥中,点,分别是,的中点,,.求证:⑴平面;⑵.21.已知函数.(1)求的值;(2)若,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】连接,由三角形中位线定理及平行四边形性质可得,所以是与所成角,由正方体的性质可知是等边三角形,所以,与所成角是,故选C.2、D【解析】
令正方形对角线与的交点为,如图所示:由正方形中,,则,那么,将正方形沿对角线折起,如图所示:则点为三棱锥的外接球的球心,且半径为,故外接球的表面积为.故选:D【点睛】本题考查了多面体的外接球问题以及球的表面积公式,属于基础题.3、A【解析】
利用函数的奇偶性和函数图像上的特殊点,对选项进行排除,由此得出正确选项.【详解】由于,所以函数为奇函数,图像关于原点对称,排除C选项.由于,所以排除D选项.由于,所以排除B选项.故选:A.【点睛】本小题主要考查函数图像的识别,考查函数的奇偶性、特殊点,属于基础题.4、D【解析】
设,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【详解】设,①,,所以数列是等比数列;②,,所以数列是等比数列;③,不是一个常数,所以数列不是等比数列;④,不是一个常数,所以数列不是等比数列.故选D【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.5、A【解析】
根据圆锥的底面圆周长等于半圆弧长可计算出圆锥底面圆半径,由勾股定理可计算出圆锥的高,再利用锥体体积公式可计算出圆锥的体积.【详解】设圆锥的底面圆半径为,高为,则圆锥底面圆周长为,得,,所以,圆锥的体积为,故选:A.【点睛】本题考查圆锥体积的计算,解题的关键就是要计算出圆锥底面圆的半径和高,解题时要从已知条件列等式计算,并分析出一些几何等量关系,考查空间想象能力与计算能力,属于中等题.6、C【解析】试题分析:由题意得,,选C.考点:茎叶图7、D【解析】试题分析:设点(4,0)关于直线5x+4y+21=0的对称点是,则点在直线5x+4y+21=0上,将选项代入就可排除A,B,C,答案为D考点:点关于直线对称,排除法的应用8、C【解析】2.∴当时,,当时,,故选C.9、B【解析】试题分析:设从2015年开始第年该公司全年投入的研发资金开始超过200万元,由已知得,两边取常用对数得,故从2019年开始,该公司全年投入的研发资金开始超过200万元,故选B.【考点】增长率问题,常用对数的应用【名师点睛】本题考查等比数列的实际应用.在实际问题中平均增长率问题可以看作等比数列的应用,解题时要注意把哪个数作为数列的首项,然后根据等比数列的通项公式写出通项,列出不等式或方程就可求解.10、C【解析】如图:是底面中心,是侧棱与底面所成的角;在直角中,故选C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由条件利用任意角的三角函数的定义,求得和的值,从而可得的值.【详解】因为角的终边经过点,所以,,则.故答案为:【点睛】本题主要考查任意角的三角函数的定义,属于基础题.12、.【解析】
先利用等比中项的性质计算出的值,然后由可求出的值.【详解】由等比中项的性质可得,得,所以,,,故答案为.【点睛】本题考查等比数列公比的计算,充分利用等比中项和等比数列相关性质的应用,可简化计算,属于中等题.13、【解析】分析:利用两角和正弦公式简化为y=,从而得到函数的最大值.详解:y=sinx+cosx==.∴函数的最大值是故答案为点睛:本题考查了两角和正弦公式,考查了正弦函数的图象与性质,属于基础题.14、3【解析】
利用向量共线的坐标公式,列式求解.【详解】因为向量与向量共线,所以,故答案为:3.【点睛】本题考查向量共线的坐标公式,属于基础题.15、【解析】
由条件根据函数的图象变换规律,,可得的解析式,从而求得的值.【详解】将函数向左平移个单位长度可得的图象;保持纵坐标不变,横坐标伸长为原来的倍可得的图象,故,所以.【点睛】本题主要考查函数)的图象变换规律,属于中档题.16、【解析】
化简函数解析式,,时,是余弦函数单调减区间的子集,即可求解.【详解】,时,,且在上是减函数,,,因为解得.【点睛】本题主要考查了函数的三角恒等变化,余弦函数的单调性,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)存在点使得成立.【解析】
(1)设P(x,y),由|PA|=2|PB|,得=2,由此能求出曲线的方程.(2)由题意得M(0,1),N(0,-1),设点R(x0,y0),(x0≠0),由点R在曲线上,得=1,直线RM的方程,从而直线RM与直线y=3的交点为,直线RN的方程为,从而直线RN与直线y=3的交点为,假设存在点S(0,m),使得成立,则,由此能求出存在点S,使得成立,且S点的坐标为.【详解】(1)设,由,得:,整理得.所以曲线的方程为.(2)由题意得,,.设点,由点在曲线上,所以.直线的方程为,所以直线与直线的交点为.直线的方程为所以直线与直线的交点为.假设存在点,使得成立,则,.即,整理得.因为,所以,解得.所以存在点使得成立,且点的坐标为.【点睛】本题考查曲线方程的求法,考查是否存在满足向量积为0的点的判断与求法,考查圆、直线方程、向量的数量积公式等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.18、(1);(2).【解析】
(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角的大小;(2)在中,设,由余弦定理及正弦定理用表示出.再根据三角形面积公式表示出,即可结合正弦函数的图像与性质求得最大值.【详解】(1)由题意可得:∴整理得∴∴∴又∴(2)在中,设,由余弦定理得:,∵为正三角形,∴,在中,由正弦定理得:,∴,∴,∵,∵,∴为锐角,,,,∵∴当时,.【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题.19、(1)4;(2)【解析】
(1)利用两角差的正弦和正弦定理将条件化成,再利用余弦定理代入,即可求得的值;(2)由可求得,的值,再由面积公式求得,结合余弦定理可得,解方程即可得答案.【详解】(1)∵,∴,∴∴,解得:.(2),,,,,∵,∴.【点睛】本题考查两角差的正弦、正弦定理、余弦定理的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.20、(1)见证明;(2)见证明【解析】
(1)由中位线定理即可说明,由此证明平面;(2)首先证明平面,由线面垂直的性质即可证明【详解】证明:⑴因为在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年文学鉴赏与文学理论应用题库
- 2026年自然地理知识地球科学及环境保护知识题集
- 2026年汽车维修技术汽车故障诊断与维修操作题库
- 2026年环境科学与保护策略实践考试题库
- 2026年环境工程师水污染治理与环境保护技术理论考试题
- 2026年交通运输管理与调度策略考试题
- 2026年旅游专业综合实践能力提升题集
- 2026年健身教练资格考试题库与模拟训练手册
- 2026年电子设备检测授权签字人专业技能测试题
- 2026年建筑规范标准与技术实务问答集
- 西安民宿管理办法
- 【基于PLC的地铁屏蔽门控制系统设计8900字(论文)】
- 企业人力资源管理制度
- 医学诊断证明书规范与管理体系
- 《肝性脑病》课件
- 经内镜逆行胰胆管造影(ERCP)护理业务学习
- 养老院老人档案管理制度
- 《摩擦磨损试验》课件
- 粮油食材配送投标方案(大米食用油食材配送服务投标方案)(技术方案)
- 超声波治疗仪的生物力学效应研究
- 耳膜穿孔伤残鉴定
评论
0/150
提交评论