广东深圳平湖外国语学校2026届高一数学第二学期期末复习检测模拟试题含解析_第1页
广东深圳平湖外国语学校2026届高一数学第二学期期末复习检测模拟试题含解析_第2页
广东深圳平湖外国语学校2026届高一数学第二学期期末复习检测模拟试题含解析_第3页
广东深圳平湖外国语学校2026届高一数学第二学期期末复习检测模拟试题含解析_第4页
广东深圳平湖外国语学校2026届高一数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东深圳平湖外国语学校2026届高一数学第二学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数(且)的图像是下列图像中的()A. B.C. D.2.等差数列的前n项和为,且,,则(

)A.10 B.20 C. D.3.已知向量,且,则的值为()A.1 B.2 C. D.34.已知函数()的最小正周期为,则该函数的图象()A.关于直线对称 B.关于直线对称C.关于点对称 D.关于点对称5.若某几何体的三视图如图所示,则该几何体的体积是()A. B. C. D.36.下列说法正确的是()A.锐角是第一象限的角,所以第一象限的角都是锐角;B.如果向量,则;C.在中,记,,则向量与可以作为平面ABC内的一组基底;D.若,都是单位向量,则.7.已知空间中两点,则长为()A. B. C. D.8.计算:的结果为()A.1 B.2 C.-1 D.-29.已知a,b为非零实数,且,则下列不等式一定成立的是()A. B. C. D.10.已知圆x2+y2+2x-6y+5a=0关于直线y=x+b成轴对称图形,则A.(0,8) B.(-∞,8) C.(-∞,16)二、填空题:本大题共6小题,每小题5分,共30分。11.正方形和内接于同一个直角三角形ABC中,如图所示,设,若两正方形面积分别为=441,=440,则=______12.如果函数的图象关于直线对称,那么该函数在上的最小值为_______________.13.____________.14.若等比数列的各项均为正数,且,则等于__________.15.设,过定点A的动直线和过定点B的动直线交于点,则的最大值是.16.已知,则______;的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某广场中间有一块绿地,扇形所在圆的圆心为,半径为,,广场管理部门欲在绿地上修建观光小路:在上选一点,过修建与平行的小路,与平行的小路,设所修建的小路与的总长为,.(1)试将表示成的函数;(2)当取何值时,取最大值?求出的最大值.18.已知.(1)求;(2)求向量与的夹角的余弦值.19.已知数列的前项和为,且,.(1)求数列的通项公式;(2)已知,记(且),是否存在这样的常数,使得数列是常数列,若存在,求出的值;若不存在,请说明理由;(3)若数列,对于任意的正整数,均有成立,求证:数列是等差数列.20.设数列满足,;数列的前项和为,且(1)求数列和的通项公式;(2)若,求数列的前项和.21.已知数列为等差数列,是数列的前n项和,且,.(1)求数列的通项公式;(2)令,求数列的前n项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

将函数表示为分段函数的形式,由此确定函数图像.【详解】依题意,.由此判断出正确的选项为C.故选C.【点睛】本小题主要考查三角函数图像的识别,考查分段函数解析式的求法,考查同角三角函数的基本关系式,属于基础题.2、D【解析】

由等差数列的前项和的性质可得:,,也成等差数列,即可得出.【详解】解:由等差数列的前项和的性质可得:,,也成等差数列,,,解得.故选:.【点睛】本题考查了等差数列的前项和公式及其性质,考查了推理能力与计算能力,属于中档题.3、A【解析】

由,转化为,结合数量积的坐标运算得出,然后将所求代数式化为,并在分子分母上同时除以,利用弦化切的思想求解.【详解】由题意可得,即.∴,故选A.【点睛】本题考查垂直向量的坐标表示以及同角三角函数的基本关系,考查弦化切思想的应用,一般而言,弦化切思想应用于以下两方面:(1)弦的分式齐次式:当分式是关于角弦的次分式齐次式,分子分母同时除以,可以将分式由弦化为切;(2)弦的二次整式或二倍角的一次整式:先化为角的二次整式,然后除以化为弦的二次分式齐次式,并在分子分母中同时除以可以实现弦化切.4、D【解析】∵函数()的最小正周期为,∴,,令,,,,显然A,B错误;令,可得:,,显然时,D正确故选D5、B【解析】

先由三视图判断该几何体为底面是直角三角形的直三棱柱,由棱柱的体积公式即可求出结果.【详解】据三视图分析知,该几何体是底面为直角三角形的直三棱柱,且三棱柱的底面直角三角形的直角边长分别为1和,三棱柱的高为,所以该几何体的体积.【点睛】本题主要考查几何体的三视图,由三视图求几何体的体积,属于基础题型.6、C【解析】

可举的角在第一象限,但不是锐角,可判断A;考虑两向量是否为零向量,可判断B;由不共线,推得与不共线,可判断C;考虑两向量的方向可判断D,得到答案.【详解】对于A,锐角是第一象限的角,但第一象限的角不一定为锐角,比如的角在第一象限,但不是锐角,故A错误;对于B,如果两个非零向量满足,则,若存在零向量,结论不一定成立,故B错误;对于C,在中,记,可得与不共线,则向量与可以作为平面内的一组基底,故C正确;对于D,若都是单位向量,且方向相同时,;若方向不相同,结论不成立,所以D错误.故选C.【点睛】本题主要考查了命题的真假判断,主要是向量共线和垂直的条件,着重考查了判断能力和分析能力,属于基础题.7、C【解析】

根据空间中的距离公式,准确计算,即可求解,得到答案.【详解】由空间中的距离公式,可得,故选C.【点睛】本题主要考查了空间中的距离公式,其中解答中熟记空间中的距离公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.8、B【解析】

利用恒等变换公式化简得的答案.【详解】故答案选B【点睛】本题考查了三角恒等变换,意在考查学生的计算能力.9、C【解析】

,时,、、不成立;利用作差比较,即可求出.【详解】解:,时,,,故、、不成立;,,.故选:.【点睛】本题考查了不等式的基本性质,属于基础题.10、D【解析】

根据圆关于直线成轴对称图形得b=4,根据二元二次方程表示圆得a<2,再根据指数函数的单调性得4a【详解】解:∵圆x2+y∴圆心(-1,3)在直线∴3=-1+b,解得b=4又圆的半径r=4+36-20a2>0b故选:D.【点睛】本题考查了直线与圆的位置关系,属中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

首先根据在正方形S1和S2内,S1=441,S2=440,分别求出两个正方形的边长,然后分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式,求出sin2α的值即可.【详解】因为S1=441,S2=440,所以FD21,MQ=MN,因为AC=AF+FC2121,AC=AM+MCMNcosαcosα,所以:21cosα,整理,可得:(sinαcosα+1)=21(sinα+cosα),两边平方,可得110sin22α﹣sin2α﹣1=0,解得sin2α或sin2α(舍去),故sin2α.故答案为:.【点睛】本题主要考查了三角函数的求值问题,考查了正方形、直角三角形的性质,属于中档题,解答此题的关键是分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式.12、【解析】

根据三角公式得辅助角公式,结合三角函数的对称性求出值,再利用的取值范围求出函数的最小值.【详解】解:,令,则,则.因为函数的图象关于直线对称,所以,即,则,平方得.整理可得,则,所以函数.因为,所以,当时,即,函数有最小值为.故答案为:.【点睛】本题主要考查三角函数最值求解,结合辅助角公式和利用三角函数的对称性建立方程是解决本题的关键.13、【解析】

在分式的分子和分母中同时除以,然后利用常见数列的极限可计算出所求极限值.【详解】由题意得.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列的极限是解题的关键,考查计算能力,属于基础题.14、50【解析】由题意可得,=,填50.15、5【解析】试题分析:易得.设,则消去得:,所以点P在以AB为直径的圆上,,所以,.法二、因为两直线的斜率互为负倒数,所以,点P的轨迹是以AB为直径的圆.以下同法一.【考点定位】1、直线与圆;2、重要不等式.16、50【解析】

由分段函数的表达式,代入计算即可;先求出的表达式,结合分段函数的性质,求最小值即可.【详解】由,可得,,所以;由的表达式,可得,当时,,此时,当时,,由二次函数的性质可知,,综上,的最小值为0.故答案为:5;0.【点睛】本题考查求函数值,考查分段函数的性质,考查函数最值的计算,考查学生的计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)时,.【解析】

(1)由扇形的半径为,在中,,则,利用正弦定理求出、,从而可得出函数;(2)利用三角恒等变换思想,可得出,,利用正弦函数的单调性与最值即可求出的最大值.【详解】(1)由于扇形的半径为,,在中,,由正弦定理,,同理.,;(2),.,,当,即时,.【点睛】本题考查三角函数的实际应用,考查正弦定理与三角恒等变换思想的应用,解题的关键就是利用三角恒等变换思想将三角函数解析式化简,考查分析问题和解决问题的能力,属于中等题.18、(1);(2).【解析】

(1)根据题意求出,即可求解;(2)向量与的夹角的余弦值为:代入求值即可得解.【详解】(1)由题:,解得:(2)向量与的夹角的余弦值为:【点睛】此题考查平面向量数量积的运算,根据运算法则求解数量积和模长,求解向量夹角的余弦值.19、(1)(2)(3)见解析【解析】

(1)根据和项与通项关系得,再根据等比数列定义与通项公式求解(2)先化简,再根据恒成立思想求的值(3)根据和项得,再作差得,最后根据等差数列定义证明.【详解】(1),所以,由得时,,两式相减得,,,数列是以2为首项,公比为的等比数列,所以.(2)若数列是常数列,为常数.只有,解得,此时.(3)①,,其中,所以,当时,②②式两边同时乘以得,③①式减去③得,,所以,因为,所以数列是以为首项,公差为的等差数列.【点睛】本题考查利用和项求通项、等差数列定义以及利用恒成立思想求参数,考查基本分析论证与求解能力,属中档题20、(1),;(2)【解析】

(1)分别利用累加法、数列的递推公式得到数列和数列的通项公式.(2)利用数列求和的错位相减即可得到数列的前项和.【详解】(1),……,,以上个式子相加

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论