版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届重庆实验中学数学高一下期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数列{an}的通项公式an=,若{an}前n项和为24,则n为().A.25 B.576 C.624 D.6252.等比数列的前项和为,若,则公比()A. B. C. D.3.在长方体中,,,则异面直线与所成角的余弦值为()A. B. C. D.4.设△的内角所对的边为,,,,则()A. B.或 C. D.或5.已知向量,,则与的夹角为()A. B. C. D.6.不论为何值,直线恒过定点A. B. C. D.7.如图,设,是平面内相交的两条数轴,,分别是与轴,轴正方向同向的单位向量,且,若向量,则把有序数对叫做向量在坐标系中的坐标.假设在坐标系中的坐标为,则()A. B. C. D.8.延长正方形的边至,使得.若动点从点出发,沿正方形的边按逆时针方向运动一周回到点,若,下列判断正确的是()A.满足的点必为的中点B.满足的点有且只有一个C.的最小值不存在D.的最大值为9.已知函数满足下列条件:①定义域为;②当时;③.若关于x的方程恰有3个实数解,则实数k的取值范围是A. B. C. D.10.已知为等差数列,为其前项和.若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,.若向量与垂直,则________.12.从甲、乙、丙、丁四个学生中任选两人到一个单位实习,余下的两人到另一单位实习,则甲、乙两人不在同一单位实习的概率为________.13.一个扇形的半径是,弧长是,则圆心角的弧度数为________.14.数列满足,,则___________.15.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.16.在中,内角,,所对的边分别为,,,,且,则面积的最大值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆经过两点,且圆心在轴上.(1)求圆的方程;(2)若直线,且截轴所得纵截距为5,求直线截圆所得线段的长度.18.如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.19.已知向量,满足:=4,=3,(Ⅰ)求·的值;(Ⅱ)求的值.20.如下图,长方体ABCD-A1B1C1D1中,(1)当点E在AB上移动时,三棱锥D-D(2)当点E在AB上移动时,是否始终有D121.在等差数列{an}中,a1=1,公差d≠0,且a1,a2,a5是等比数列{bn}的前三项.(1)求数列{an}和{bn}的通项公式;(2)设cn=an·bn,求数列{cn}的前n项和Sn.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】an==-(),前n项和Sn=-[(1-)+(-)]+…+()]=-1=24,故n=624.故选C.2、A【解析】
将转化为关于的方程,解方程可得的值.【详解】∵,∴,又,∴.故选A.【点睛】本题考查等比数列的基本运算,等比数列中共有五个量,其中是基本量,这五个量可“知三求二”,求解的实质是解方程或解方程组.3、C【解析】
连接,交于,取的中点,连接、,可以证明是异面直线与所成角,利用余弦定理可求其余弦值.【详解】连接,交于,取的中点,连接.由长方体可得四边形为矩形,所以为的中点,因为为的中点,所以,所以或其补角是异面直线与所成角.在直角三角形中,则,,所以.在直角三角形中,,在中,,故选C.【点睛】空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.4、B【解析】试题分析:因为,,,由正弦定理,因为是三角形的内角,且,所以,故选B.考点:正弦定理5、D【解析】
利用夹角公式计算出两个向量夹角的余弦值,进而求得两个向量的夹角.【详解】设两个向量的夹角为,则,故.故选:D.【点睛】本小题主要考查两个向量夹角的计算,考查向量数量积和模的坐标表示,属于基础题.6、B【解析】
根据直线方程分离参数,再由直线过定点的条件可得方程组,解方程组进而可得m的值.【详解】恒过定点,恒过定点,由解得即直线恒过定点.【点睛】本题考查含有参数的直线过定点问题,过定点是解题关键.7、D【解析】
可得.【详解】向量,则.故选:.【点睛】本题主要考查了向量模的运算和向量的数量积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.8、D【解析】试题分析:设正方形的边长为1,建立如图所示直角坐标系,则的坐标为,则设,由得,所以,当在线段上时,,此时,此时,所以;当在线段上时,,此时,此时,所以;当在线段上时,,此时,此时,所以;当在线段上时,,此时,此时,所以;由以上讨论可知,当时,可为的中点,也可以是点,所以A错;使的点有两个,分别为点与中点,所以B错,当运动到点时,有最小值,故C错,当运动到点时,有最大值,所以D正确,故选D.考点:向量的坐标运算.【名师点睛】本题考查平面向量线性运算,属中档题.平面向量是高考的必考内容,向量坐标化是联系图形与代数运算的渠道,通过构建直角坐标系,使得向量运算完全代数化,通过加、减、数乘的运算法则,实现了数形的紧密结合,同时将参数的取值范围问题转化为求目标函数的取值范围问题,在解题过程中,还常利用向量相等则坐标相同这一原则,通过列方程(组)求解,体现方程思想的应用.9、D【解析】
分析:先根据条件确定函数图像,再根据过定点(1,0)的直线与图像关系确定实数k的取值范围.详解:因为,当时;所以可作函数在上图像,如图,而直线过定点A(1,0),根据图像可得恰有3个实数解时实数k的取值范围为,选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.10、D【解析】试题分析:设等差数列的公差为,由题意得,解得,所以,故答案为D.考点:1、数列的通项公式;2、数列的前项和.二、填空题:本大题共6小题,每小题5分,共30分。11、7【解析】
由与垂直,则数量积为0,求出对应的坐标,计算即可.【详解】,,,又与垂直,故,解得,解得.故答案为:7.【点睛】本题考查通过向量数量积求参数的值.12、.【解析】
求得从甲、乙、丙、丁四个学生中任选两人的总数和甲、乙两人不在同一单位实习的方法数,由古典概型的概率计算公式可得所求值.【详解】解:从甲、乙、丙、丁四个学生中任选两人的方法数为种,甲、乙两人不在同一单位实习的方法数为种,则甲、乙两人不在同一单位实习的概率为.故答案为:.【点睛】本题主要考查古典概型的概率计算公式,考查运算能力,属于基础题.13、2【解析】
直接根据弧长公式,可得.【详解】因为,所以,解得【点睛】本题主要考查弧长公式的应用.14、2【解析】
利用递推公式求解即可.【详解】由题得.故答案为2【点睛】本题主要考查利用递推公式求数列中的项,意在考查学生对这些知识的理解掌握水平,属于基础题.15、【解析】正方体体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π.故答案为:12π.点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.16、【解析】
根据正弦定理将转化为,即,由余弦定理得,再用基本不等式法求得,根据面积公式求解.【详解】根据正弦定理可转化为,化简得由余弦定理得因为所以,当且仅当时取所以则面积的最大值为.故答案为:【点睛】本题主要考查正弦定理,余弦定理,基本不等式的综合应用,还考查了运算求解的能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)设圆心的坐标为,利用求出的值,可确定圆心坐标,并计算出半径长,然后利用标准方程可写出圆的方程;(2)由,得出直线的斜率与直线的斜率相等,可得出直线的斜率,再由截轴所得纵截距为,可得出直线的方程,计算圆心到直线的距离,则.【详解】(1)设圆心,则,则所以圆方程:.(2)由于,且,则,则圆心到直线的距离为:.由于,【点睛】本题考查圆的方程的求解以及直线截圆所得弦长的计算,再解直线与圆相关的问题时,可充分利用圆的几何性质,利用几何法来处理,问题的核心在于计算圆心到直线的距离的计算,在计算弦长时,也可以利用弦长公式来计算。18、(1)见解析(2)见解析【解析】试题分析:(1)先由平面几何知识证明,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得平面,则,再由AB⊥AD及线面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.试题解析:证明:(1)在平面内,因为AB⊥AD,,所以.又因为平面ABC,平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因为平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因为AC平面ABC,所以AD⊥AC.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.19、(Ⅰ)=2(Ⅱ)【解析】
(I)计算,结合两向量的模可得;(II)利用,把求模转化为向量的数量积运算.【详解】解:(Ⅰ)由题意得即又因为所以解得=2.(Ⅱ)因为,所以=16+36-4×2=44.又因为所以.【点睛】本题考查平面向量的数量积,解题关键是掌握性质:,即模数量积的转化.20、(1)13【解析】(I)三棱锥D-D∵∴V(II)当点E在AB上移动时,始终有D1证明:连接AD1,∵四边形∴A1∵AE⊥平面ADD1A1,∴A1又AB∩AD1=A,AB⊂∴A1D⊥平面又D1E⊂平面∴D121、(1)bn=3n-1;(2)Sn=(n-1)·3n+1【解析】
(1)由a1,a2,a5是等比数列{bn}的前三项得,a22=a1·a5⇒(a1+d)2=a1·(a1+4d)··⇒a12+2a1d+d2=a12+4a1d⇒d2=2a1d,又d≠0,所以d=2a1=2,从而an=a1+(n-1)d=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年工程安全防护技术与管理题库及答案
- 2026年游戏开发工程师专业试题集含游戏引擎运用
- 2026年职业资格认证考试项目管理知识与技能题库
- 2026年电子商务交易安全审计要点题解
- 2026年电影行业从业人员基础常识笔试模拟题
- 2026年环境保护知识库环保知识专项模拟题
- 2026年大数据分析在市场调研中的应用题目
- 2026年计算机编程专业笔试预测模拟题
- 2026年护士执业资格考试护理基础理论与实践题库
- 2026年通信技术基础移动通信网络考试题库
- 肝性脑病的分级及护理
- 2025年湖北高考真题化学试题(原卷版)
- 2025年中考数学二轮复习专题一 数与式中的化简与计算(含答案)
- T/CECS 10011-2022聚乙烯共混聚氯乙烯高性能双壁波纹管材
- GA/T 2157-2024毛细管电泳遗传分析仪
- 《胰高血糖素抵抗》课件
- 艾滋病实验室课件
- (高清版)AQ 1056-2008 煤矿通风能力核定标准
- 高中名校自主招生考试数学重点考点及习题精讲讲义上(含答案详解)
- 论地理环境对潮汕饮食文化的影响
- 2023年安徽省中考数学试卷及答案详解
评论
0/150
提交评论