版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西百色市田东中学2026届高一数学第二学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一几何体的三视图如图所示,则该几何体的表面积为()A.16 B.20 C.24 D.282.函数的单调减区间为()A.(kπ﹣,kπ],(k∈Z) B.(kπ﹣,kπ],(k∈Z)C.(kπ﹣,kπ+],(k∈Z) D.(kπ+,kπ+],(k∈Z)3.已知是等差数列,其中,,则公差()A. B. C. D.4.同时具有性质:“①最小正周期是;②图象关于直线对称;③在上是单调递增函数”的一个函数可以是()A. B.C. D.5.已知为的一个内角,向量.若,则角()A. B. C. D.6.已知集合,则().A. B. C. D.7.在中,,.若点满足,则()A. B. C. D.8.设,是两条不同的直线,,是两个不同的平面,是下列命题正确的是()A.若,,则 B.若,,,则C.若,,,则 D.若,,,则9.已知直线l的方程为2x+3y=5,点P(a,b)在l上位于第一象限内的点,则的最小值为()A. B. C. D.10.在边长为2的菱形中,,是的中点,则A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知线段上有个确定的点(包括端点与).现对这些点进行往返标数(从…进行标数,遇到同方向点不够数时就“调头”往回数).如图:在点上标,称为点,然后从点开始数到第二个数,标上,称为点,再从点开始数到第三个数,标上,称为点(标上数的点称为点),……,这样一直继续下去,直到,,,…,都被标记到点上,则点上的所有标记的数中,最小的是_______.12.在△ABC中,已知30,则B等于__________.13.已知,,,则的最小值为________.14.已知函数,,则的最大值是__________.15.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.16.已知cosθ,θ∈(π,2π),则sinθ=_____,tan_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆的方程为,直线l的方程为,点P在直线l上,过点P作圆的切线PA,PB,切点为A,B.(1)若,求点P的坐标;(2)求证:经过A,P,三点的圆必经过异于的某个定点,并求该定点的坐标.18.函数.(1)求函数的图象的对称轴方程;(2)当时,不等式恒成立,求m的取值范围.19.已知不等式ax2-3x+6>4的解集为{x|x<1(1)求a,b;(2)解关于x的不等式a20.求值:(1)一个扇形的面积为1,周长为4,求圆心角的弧度数;(2)已知,计算.21.已知圆C过点,圆心在直线上.(1)求圆C的方程;(2)过圆O1:上任一点P作圆C的两条切线,切点分别为Q,T,求四边形PQCT面积的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据三视图可还原几何体,根据长度关系依次计算出各个侧面和上下底面的面积,加和得到表面积.【详解】有三视图可得几何体的直观图如下图所示:其中:,,,则:,,,,几何体表面积:本题正确选项:【点睛】本题考查几何体表面积的求解问题,关键是能够根据三视图准确还原几何体,从而根据长度关系可依次计算出各个面的面积.2、C【解析】
根据复合函数的单调性,得到函数的减区间,即为的增区间,且,根据三角函数的图象与性质,即可求解.【详解】由题意,函数在定义域上是减函数,根据复合函数的单调性,可得函数的减区间,即的增区间,且,则,得,则函数的单调递减区间为,故选C.【点睛】本题主要考查了对数函数及三角函数的图象与性质的应用,其中解答中熟记对数函数的性质,以及三角函数的图象与性质,根据复合函数的单调性进行判定是解答的关键,着重考查了推理与运算能力,属于基础题.3、D【解析】
根据等差数列通项公式即可构造方程求得结果.【详解】故选:【点睛】本题考查等差数列基本量的计算,关键是熟练应用等差数列通项公式,属于基础题.4、D【解析】
利用正弦函数、余弦函数的图象和性质,逐一检验,可得结论.【详解】A,对于y=cos(),它的周期为4π,故不满足条件.B,对于y=sin(2x),在区间上,2x∈[,],故该函数在区间上不是单调递增函数,故不满足条件.C,对于y=cos(2x),当x时,函数y,不是最值,故不满足②它的图象关于直线x对称,故不满足条件.D,对于y=sin(2x),它的周期为π,当x时,函数y=1,是函数的最大值,满足它的图象关于直线x对称;且在区间上,2x∈[,],故该函数在区间上是单调递增函数,满足条件.故选:D.【点睛】本题主要考查了正弦函数、余弦函数的图象和性质,属于中档题.5、C【解析】
带入计算即可.【详解】即,选C.【点睛】本题考查向量向量垂直的坐标运算,属于基础题.6、B【解析】
求解一元二次不等式的解集,化简集合的表示,最后运用集合交集的定义,结合数轴求出.【详解】因为,所以,故本题选B.【点睛】本题考查了一元二次不等式的解法,考查了集合交集的运算,正确求解一元二次不等式的解集、运用数轴是解题的关键.7、A【解析】
试题分析:,故选A.8、D【解析】
根据空间中线线,线面,面面位置关系,逐项判断即可得出结果.【详解】A选项,若,,则可能平行、相交、或异面;故A错;B选项,若,,,则可能平行或异面;故B错;C选项,若,,,如果再满足,才会有则与垂直,所以与不一定垂直;故C错;D选项,若,,则,又,由面面垂直的判定定理,可得,故D正确.故选D【点睛】本题主要考查空间的线面,面面位置关系,熟记位置关系,以及判定定理即可,属于常考题型.9、C【解析】
由题意可得2a+3b=5,a,b>0,可得4a=10﹣6b,(3b<5),将所求式子化为b的关系式,由基本不等式可得所求最小值.【详解】直线l的方程为2x+3y=5,点P(a,b)在l上位于第一象限内的点,可得2a+3b=5,a,b>0,可得4a=10﹣6b,(3b<5),则[(11﹣6b)+(9+6b)]()(7),当且仅当时,即b,a,上式取得最小值,故选:C.【点评】本题考查基本不等式的运用:求最值,考查变形能力和化简运算能力,属于中档题.10、D【解析】
选取向量为基底,用基底表示,然后计算.【详解】由题意,,.故选D.【点睛】本题考查向量的数量积,平面向量的线性运算,解题关键是选取基底,把向量用基底表示.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
将线段上的点考虑为一圆周,所以共有16个位置,利用规则,可知标记2019的是,2039190除以16的余数为6,即线段的第6个点标为2019,则,令,即可得.【详解】依照题意知,标有2的是1+2,标有3的是1+2+3,……,标有2019的是1+2+3+……+2019,将将线段上的点考虑为一圆周,所以共有16个位置,利用规则,可知标记2019的是,2039190除以16的余数为6,即线段的第6个点标为2019,,令,,解得,故点上的所有标记的数中,最小的是3.【点睛】本题主要考查利用合情推理,分析解决问题的能力.意在考查学生的逻辑推理能力,12、【解析】
根据三角形正弦定理得到角,再由三角形内角和关系得到结果.【详解】根据三角形的正弦定理得到,故得到角,当角时,有三角形内角和为,得到,当角时,角故答案为【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.13、1【解析】
由题意整体代入可得,由基本不等式可得.【详解】由,,,则.当且仅当=,即a=3且b=时,取得最小值1.故答案为:1.【点睛】本题考查基本不等式求最值,整体法并凑出可用基本不等式的形式是解决问题的关键,属于基础题.14、3【解析】函数在上为减函数,故最大值为.15、【解析】分析:由题意利用待定系数法求解圆的方程即可.详解:设圆的方程为,圆经过三点(0,0),(1,1),(2,0),则:,解得:,则圆的方程为.点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.16、﹣2.【解析】
由题意利用同角三角函数的基本关系,二倍角公式,求得式子的值.【详解】由,,知,则,.故答案为:,.【点睛】本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)和;(2)和【解析】
(1)设,连接,分析易得,即有,解得的值,即可得到答案.(2)根据题意,分析可得:过A,P,三点的圆为以为直径的圆,设的坐标为,用表示过A,P,三点的圆为,结合直线与圆的位置关系,分析可得答案.【详解】(1)根据题意,点P在直线l上,设,连接,因为圆的方程为,所以圆心,半径,因为过点P作圆的切线PA,PB,切点为A,B;则有,且,易得,又由,即,则,即有,解得或,即的坐标为和.(2)根据题意,是圆的切线,则,则过A,P,三点的圆为以为直径的圆,设的坐标为,,则以为直径的圆为,变形可得:,即,则有,解得或,则当和,时,恒成立,则经过A,P,三点的圆必经过异于的某个定点,且定点的坐标和.【点睛】本题考查了直线与圆的位置关系、圆中的定点问题,考查学生分析问题、解决问题的能力,属于中档题.18、(1),(2)【解析】
(1)首先利用二倍角公式及两角和差的正弦公式化简得到,再根据正弦函数的性质求出函数的对称轴;(2)由,求出的值域,设,则.则当时,不等式恒成立,等价于对于恒成立,则解得即可;【详解】解:(1).即令,解得,则图象的对称轴方程为,(2)当时,,则,从而,设,则.当时,不等式恒成立,等价于对于恒成立,则解得.故m的取值范围为.【点睛】本题考查两角和与差的正弦公式,考查三角变换与辅助角公式的应用,突出考查正弦函数的性质以及一元二次不等式在给定区间上恒成立问题,属于中档题.19、(1)a=1,b=2;(2)①当c>2时,解集为{x|2<x<c};②当c<2时,解集为{x|c<x<2};③当c=2时,解集为∅.【解析】
(1)根据不等式ax2﹣3x+6>4的解集,利用根与系数的关系,求得a、b的值;(2)把不等式ax2﹣(ac+b)x+bc<0化为x2﹣(2+c)x+2c<0,讨论c的取值,求出对应不等式的解集.【详解】(1)因为不等式ax2﹣3x+6>4的解集为{x|x<1,或x>b},所以1和b是方程ax2﹣3x+2=0的两个实数根,且b>1;由根与系数的关系,得1+b=3解得a=1,b=2;(2)所求不等式ax2﹣(ac+b)x+bc<0化为x2﹣(2+c)x+2c<0,即(x﹣2)(x﹣c)<0;①当c>2时,不等式(x﹣2)(x﹣c)<0的解集为{x|2<x<c};②当c<2时,不等式(x﹣2)(x﹣c)<0的解集为{x|c<x<2};③当c=2时,不等式(x﹣2)(x﹣c)<0的解集为∅.【点睛】本题考查了不等式的解法与应用问题,也考查了不等式与方程的关系,考查了分类讨论思想,是中档题.20、(1);(2).【解析】
(1)设出扇形的半径为,弧长为,利用面积、周长的值,得到关于的方程;(2)由已知条件得到,再代入所求的式子进行约分求值.【详解】(1)设扇形的半径为,弧长为,则解得:所以圆心角的弧度数.(2)因为,所以,所以.【点睛】若三个中,只要知道其中一个,则另外两个都可求出,即知一求二.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公共体育场考核制度
- 单位卫生奖惩考核制度
- 银行安保服务考核制度
- 煤矿生产班组考核制度
- 天台县学校考核制度
- 平板车安全考核制度
- 新闻信息报送考核制度
- 外出培训教师考核制度
- 企业运营中心考核制度
- 工作室学员考核制度
- 芯粒数学描述与组合优化理论突破
- 小学语文课堂美育融合教学策略
- 2025年贵州省高考地理试卷试题真题及答案详解
- 国家自然博物馆面试常见问题及应对策略
- 园林环卫安全培训内容课件
- (2025年标准)签下恋爱协议书
- 生产流程控制
- 餐厨废弃物处置制度(3篇)
- GB/T 44233.2-2024蓄电池和蓄电池组安装的安全要求第2部分:固定型电池
- 船舶建造工艺船台装配
- 居民死亡医学证明(推断)书+空白表
评论
0/150
提交评论