版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河南省安阳市林州第一中学数学高一下期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有().A. B. C. D.2.已知数列的前项和为,且满足,,则()A. B. C. D.3.关于某设备的使用年限(单位:年)和所支出的维修费用(单位:万元)有如下统计数据表:使用年限维修费用根据上表可得回归直线方程,据此估计,该设备使用年限为年时所支出的维修费用约是()A.万元 B.万元 C.万元 D.万元4.某市新上了一批便民公共自行车,有绿色和橙黄色两种颜色,且绿色公共自行车和橙黄色公共自行车的数量比为2∶1,现在按照分层抽样的方法抽取36辆这样的公共自行车放在某校门口,则其中绿色公共自行车的辆数是()A.8 B.12 C.16 D.245.已知基本单位向量,,则的值为()A.1 B.5 C.7 D.256.在中,,则等于()A. B. C. D.7.定义平面凸四边形为平面上没有内角度数大于的四边形,在平面凸四边形中,,,,,设,则的取值范围是()A. B. C. D.8.从数字0,1,2,3,4中任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为()A. B. C. D.9.在中,角,,所对的边分别是,,,,,,则()A.或 B.C. D.10.设a>0,b>0,若是和的等比中项,则的最小值为()A.6 B. C.8 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.给出以下四个结论:①平行于同一直线的两条直线互相平行;②垂直于同一平面的两个平面互相平行;③若,是两个平面;,是异面直线;且,,,,则;④若三棱锥中,,,则点在平面内的射影是的垂心;其中错误结论的序号为__________.(要求填上所有错误结论的序号)12.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份的含量(单位:)与药物功效(单位:药物单位)之间具有关系:.检测这种药品一个批次的5个样本,得到成份的平均值为,标准差为,估计这批中成药的药物功效的平均值为__________药物单位.13.在平面直角坐标系中,定义两点之间的直角距离为:现有以下命题:①若是轴上的两点,则;②已知,则为定值;③原点与直线上任意一点之间的直角距离的最小值为;④若表示两点间的距离,那么.其中真命题是__________(写出所有真命题的序号).14.不等式的解为_______.15.若x、y满足约束条件,则的最大值为________.16.若关于x的不等式ax2+bx+c<0的解集是{x|x<-2或x>-1},则关于x的不等式cx2+bx+a>0的解集是____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,,设.(1)求,,;(2)证明:数列是等比数列,并求数列和的通项公式.18.正方体的棱长为点分别是棱的中点(1)证明:四边形是一个梯形:(2)求几何体的表面积和体积19.的内角,,的对边分别为,,,已知.(1)求角;(2)若,求面积的最大值.20.某生产厂家生产一种产品的固定成本为4万元,并且每生产1百台产品需增加投入0.8万元.已知销售收入(万元)满足(其中是该产品的月产量,单位:百台),假定生产的产品都能卖掉,请完成下列问题:(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少万元?21.如图,在四棱锥中,平面,底面是棱长为的菱形,,,是的中点.(1)求证://平面;(2)求直线与平面所成角的正切值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据所给数据,分别求出平均数为a,中位数为b,众数为c,然后进行比较可得选项.【详解】,中位数为,众数为.故选:B.【点睛】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.2、B【解析】
由可知,数列隔项成等比数列,从而得到结果.【详解】由可知:当n≥2时,,两式作商可得:∴奇数项构成以1为首项,2为公比的等比数列,偶数项构成以2为首项,2为公比的等比数列,∴故选:B【点睛】本题考查数列的递推关系,考查隔项成等比,考查分析问题解决问题的能力,属于中档题.3、C【解析】
计算出和,将点的坐标代入回归直线方程,求得实数的值,然后将代入回归直线方程可求得结果.【详解】由表格中的数据可得,,由于回归直线过样本中心点,则,解得,所以,回归直线方程为,当时,.因此,该设备使用年限为年时所支出的维修费用约是万元.故选:C.【点睛】本题考查利用回归直线方程对总体数据进行估计,充分利用结论“回归直线过样本的中心点”的应用,考查计算能力,属于基础题.4、D【解析】设放在该校门口的绿色公共自行车的辆数是x,则,解得x=1.故选D5、B【解析】
计算出向量的坐标,再利用向量的求模公式计算出的值.【详解】由题意可得,因此,,故选B.【点睛】本题考查向量模的计算,解题的关键就是求出向量的坐标,并利用坐标求出向量的模,考查运算求解能力,属于基础题.6、D【解析】
先根据向量的夹角公式计算出的值,然后再根据同角的三角函数的基本关系即可求解出的值.【详解】因为,所以,所以,所以.故选:D.【点睛】本题考查坐标形式下向量的夹角计算,难度较易.注意:的夹角并不是,而应是的补角.7、D【解析】
先利用余弦定理计算,设,将表示为的函数,再求取值范围.【详解】如图所示:在中,利用正弦定理:当时,有最小值为当时,有最大值为(不能取等号)的取值范围是故答案选D【点睛】本题考查了利用正余弦定理计算长度范围,将表示为的函数是解题的关键.8、B【解析】
直接利用古典概型的概率公式求解.【详解】从数字0,1,2,3,4中任取两个不同的数字构成一个两位数有10,12,13,14,20,21,23,24,30,31,32,34,40,41,42,43,共16个,其中大于30的有31,32,34,40,41,42,43,共7个,故所求概率为.故选B【点睛】本题主要考查古典概型的概率的计算,意在考查学生对该知识的理解掌握水平,属于基础题.9、C【解析】
将已知代入正弦定理可得,根据,由三角形中大边对大角可得:,即可求得.【详解】解:,,由正弦定理得:故选C.【点睛】本题考查了正弦定理、三角形的边角大小关系,考查了推理能力与计算能力.10、D【解析】
试题分析:由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.考点:重要不等式,等比中项二、填空题:本大题共6小题,每小题5分,共30分。11、②【解析】
③①可由课本推论知正确;②可举反例;④可进行证明.【详解】命题①平行于同一直线的两条直线互相平行,由课本推论知是正确的;②垂直于同一平面的两个平面互相平行,是错误的,例如正方体的上底面,前面和右侧面,是互相垂直的关系;③根据课本推论知结论正确;④若三棱锥中,,,则点在平面内的射影是的垂心这一结论是正确的;作出B在底面的射影O,连结AO,DO,则,同理,,进而得到O为三角形的垂心.
故答案为②【点睛】这个题目考查了命题真假的判断,一般这类题目可以通过课本的性质或者结论进行判断;也可以通过举反例来解决这个问题.12、92【解析】
由题可得,进而可得,再计算出,从而得出答案.【详解】5个样本成份的平均值为,标准差为,所以,,即,解得因为,所以所以这批中成药的药物功效的平均值药物单位【点睛】本题考查求几个数的平均数,解题的关键是求出,属于一般题.13、①②④【解析】
根据新定义的直角距离,结合具体选项,进行逐一分析即可.【详解】对①:因为是轴上的两点,故,则,①正确;对②:根据定义因为,故,②正确;对③:根据定义,当且仅当时,取得最小值,故③错误;对④:因为,由不等式,即可得,故④正确.综上正确的有①②④故答案为:①②④.【点睛】本题考查新定义问题,涉及同角三角函数关系,绝对值三角不等式,属综合题.14、【解析】
把不等式转化为,即可求解.【详解】由题意,不等式,等价于,解得.即不等式的解为故答案为:.【点睛】本题主要考查了分式不等式的求解,其中解答中熟记分式不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.15、18【解析】
先作出不等式组所表示的平面区域,再观察图像即可得解.【详解】解:作出不等式组所表示的平面区域,如图所示,由图可得:目标函数所在直线过点时,取最大值,即,故答案为:.【点睛】本题考查了简单的线性规划问题,重点考查了作图能力,属基础题.16、{x|-1<x<-}【解析】
观察两个不等式的系数间的关系,得出其根的关系,再由和的正负可得解.【详解】由已知可得:的两个根是和,且将方程两边同时除以,得,所以的两个根是和,且解集是故得解.【点睛】本题考查一元二次方程和一元二次不等式间的关系,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2)证明见详解,,.【解析】
(1)根据递推公式,赋值求解即可;(2)利用定义,求证为定值即可,由数列通项公式即可求得和.【详解】(1)由条件可得,将代入得,,而,所以.将代入得,所以.从而,,.(2)由条件可得,即,,又,所以是首项为1,公比为3的等比数列,.因为,所以.【点睛】本题考查利用递推关系求数列某项的值,以及利用数列定义证明等比数列,及求通项公式,是数列综合基础题.18、(1)证明见解析(2)表面积为,体积为【解析】
(1)在正方体中,根据分别是棱的中点,由中位线得到且,又由,根据公理4平行关系的传递性得证.(2)几何体的表面积,上下底是直角三角形,三个侧面,有两个是全等的直角梯形,另一个是等腰梯形求解,体积按照棱台体积公式求解.【详解】(1)如图所示:在正方体中,因为分别是棱的中点,所以且,又因为,所以且,所以四边形是一个梯形.(2)几何体的表面积为:.体积为:.【点睛】本题主要考查几何体中的截面问题,还考查了空间想象,抽象概括,推理论证的能力,属于中档题.19、(1);(2).【解析】
(1)由边角互化整理后,即可求得角C;(2)由余弦定理,结合均值不等式,求解的最大值,代入面积即可.【详解】(1)由正弦定理得,,,,因为,所以,所以,即,所以.(2)由余弦定理可得:即,所以,当且仅当时,取得最大值为.【点睛】本题考查解三角形中的边角互化,以及利用余弦定理及均值不等式求三角形面积的最值问题,属综合中档题.20、(1);(2)当月产量为8百台时,公司所获利润最大,最大利润为万元.【解析】
(1)由题可得成本函数G(x)=4+,通过f(x)=R(x)-G(x)得到解析式;(2)当x>10时,当0≤x≤10时,分别求解函数的最大值即可.【详解】(1)由条件知成本函数G(x)=4+可得(2)当时,,当时,的最大值为万元;当时,万元,综上所述,当月产量为8百台时,公司所获利润最大,最大利润为万元.【点睛】本题考查实际问题的应用,分段函数的应用,函数的最大值的求法,考查转化思想以及计算能力.21、(1)见解析(2)【解析】
(1)连接交于点,则为的中点,由中位线的性质得出,再利用直线与平面平行的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鸡场防疫人员考核制度
- 农资经销店考核制度
- 国内跟单员 考核制度
- 后勤部长考核制度模板
- 河北省事业考核制度
- 公司部门之间考核制度
- 社区基层党员考核制度
- 2026年高考语文模拟试题及答案
- 全国考安全员证模拟及答案
- 山东省泰安第四中学2026届生物高一下期末学业水平测试试题含解析
- 山西省临汾市2025-2026年八年级上物理期末试卷(含答案)
- 建筑施工行业2026年春节节后复工复产安全教育培训
- 轧钢知识培训感想课件
- 预防术后静脉血栓的药物应用规范
- 从生活到生活化课程培训
- 磷矿中有价金属综合利用研究
- GB 24727-2009非公路旅游观光车安全使用规范
- 《功能材料制备与成形》课件第五章 流法成型-1
评论
0/150
提交评论