版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.1.2导数的概念,如图是函数 的 图像,求:从2s到(2+t)s 这段时间内平均速度.,计算运动员在 这段时间里的平均速度,并思考以下问题: 运动员在这段时间内使静止的吗? 你认为用平均速度描述运动员的运动状态有什么问题吗?,一.探究与回顾,探究结论: 平均变化率近似地刻画了曲线在某一区间上的变化趋势.,3.1.2 新课引入,在高台跳水运动中,平均速度不一定能反映运动员在某一时刻的运动状态,需要用瞬时速度描述运动状态。我们把物体在某一时刻的速度称为瞬时速度.,又如何求 瞬时速度呢?,问题:如何刻画曲线在一点处的变化趋势呢?,当 t 趋近于0时, 即无论 t 从小于2的一边, 还是从大于2的
2、一边趋近于2时, 平均速度都趋近与一个确定的值 13.1.,从物理的角度看, 时间间隔 |t |无限变小时, 平均速度 就无限趋近于 t = 2时的瞬时速度. 因此, 运动员在 t = 2 时的瞬时速度是 13.1.,表示“当t =2, t趋近于0时, 平均速度 趋近于确定值 13.1”.,从2s到(2+t)s这段时间内平均速度,小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值.,探 究:,1.运动员在某一时刻 t0 的瞬时速度怎样表示? 2.函数f (x)在 x = x0 处的瞬时变化率怎样表示?,由导数的定义可知, 求函数 y =
3、f (x)的导数的一般方法:,求函数的改变量 2. 求平均变化率 3. 求值,例1(1)求函数 在 处的导数.,在,例1(1)求函数 在 处的导数.,解:方法一 定义法(略) 方法二:,在,解:,例2. 将原油精炼为汽油、柴油、塑胶等各种不同产品, 需要对原油进行冷却和加热. 如果第 x h时, 原油的温度(单位: )为 f (x) = x2 7x+15 ( 0 x8 ) . 计算第2h和第6h, 原油温度的瞬时变化率, 并说明它们的意义.,所以,同理可得,在第2h和第6h时, 原油温度的瞬时变化率分别为3和5. 它说明在第2h附近, 原油温度大约以3 / h的速率下降; 在第6h附近,原油温度大约以5 / h的速率上升.,2. 例2中,计算第 时和第 时,原油温度的瞬时变化率,并说明它们的意义,1、知识点:导数的概念(瞬时变化率),导数的计算; 2、主要思想方法:逼近.,五
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论