(精选幻灯片)优质课8.1二元一次方程组_第1页
(精选幻灯片)优质课8.1二元一次方程组_第2页
(精选幻灯片)优质课8.1二元一次方程组_第3页
(精选幻灯片)优质课8.1二元一次方程组_第4页
(精选幻灯片)优质课8.1二元一次方程组_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8.1二元一次方程组,1,2,篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.如果某队在10场比赛中得16分,那么这个队胜负场数应分别是多少?,问题情境,在这个问题中有哪些等量关系呢?,胜的场数负的场数总场数,胜场积分负场积分总积分,分析:,3,分析:,在这个问题中有哪些等量关系呢?,胜的场数负的场数总场数,胜场积分负场积分总积分,设篮球队胜了场,则负了场,x,(10-x),4,分析:,在这个问题中有哪些等量关系呢?,胜的场数负的场数总场数,胜场积分负场积分总积分,y=10,y=16,2x,x,设篮球队胜了x场,负了y场。,这两个方程有什么特点呢?与一元一次方程有什么不同?,5,xy=10,2xy=16,新知一:,二元一次方程的定义:,含有两个未知数,并且含未知数的项的次数都是1,方程的两边都是整式,像这样的方程叫做二元一次方程。,6,6,1,4,5,2,3,砸金蛋游戏,7,判断此方程是否为二元一次方程:,返回,8,2x=1-3y,判断此方程是否为二元一次方程:,返回,9,4x+=0,判断此方程是否为二元一次方程:,返回,10,判断此方程是否为二元一次方程:,返回,11,3y-2x=z+5,判断此方程是否为二元一次方程:,返回,12,3-2xy=1,判断此方程是否为二元一次方程:,返回,13,(1)已知:5x3m+7-2y2n-1=4是二元一次方程,则m=,n=。,(2)若mxy+8x+3yn-2=7是关于x,y的二元一次方程,则m=,n=。,-2,1,0,3,拓展提高,14,整个方程组中共含有两个未知数,每个方程都是一次方程,并且一共有两个方程。,探究新知,15,方程组中共含有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组。,新知二:,注意:(1)共有两个未知数,(2)项的次数是1(3)共有两个方程,16,(是),(是),(是),(不是),(是),(不是),判断:,下列哪些是二元一次方程组?(1)x+y=2(2)x+2=1x-y=1x=y(3)3x=5y(4)z=x+12x-y=o2x-y=5(5)x-3y=8(6)x=2xy=6y=3,17,1、对于方程x+y=10,符合实际意义的x、y的值有哪些?把它们填入下表中,使二元一次方程左右两边相等的两个未知数的值,叫做二元一次方程的解。,109876543210,012345678910,合作探究,若不考虑实际意义你还能再找出这个方程的几个解吗?,二元一次方程有无数个解。,18,1、对于方程x+y=10,符合实际意义的x、y的值如下表:,109876543210,012345678910,不难发现x=6,y=4既满足x+y=10,又满足2x+y=16,也就是说x=6,y=4是这两个方程的公共解,我们把x=6,y=4叫做方程组的解。,X+y=102x+Y=16,记作x=6Y=4,2、上表中,哪对x、y的值,还满足方程2x+y=16呢?,19,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。,二元一次方程组的解,新知三:,20,请写出一个以为一组解的二元一次方程和二元一次方程组,数学活动,21,应用新知,加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件。现有7名工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序完成的件数相等?,解;设x名工人完成第一道工序,y名工人完成第二道工序.由题意,得,x+y=7,900 x=1200y,解得,答:应安排4名工人完成第一道工序,3名工人完成第二道工序.,22,下面四组数值中,是二元一次方程x-y=0的解,是二元一次方程x+2y=0的解,是二元一次方程组,A,C,D,A、B,A、C、D,A,B,巩固提升,的解。,23,2.你能用学过的方法列出方程组吗?,解:设有只鸡,只兔,根据题意得,今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何,24,1(20分)若是一个二元一次方程,则m=_,n=_,1,4,1,达标测试,3.(20分)二元一次方程的正整数解有_组A、一B、二C、三D、四,B,25,4.(20分)在二元一次方程x-3y=1中,当y=2时,x是()A.7B.8C.9D.10,A,5(20分)判断是否是二元一次方程组,x=3y=-5,2x+y=1x+y=-1,的解.,否.,26,二元一次方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论