人教版简单线性规划复习课件 人教_第1页
人教版简单线性规划复习课件 人教_第2页
人教版简单线性规划复习课件 人教_第3页
人教版简单线性规划复习课件 人教_第4页
人教版简单线性规划复习课件 人教_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021/8/9 星期一1简单的线性规划2021/8/9 星期一2问题1:不等式组 ,表示的平面区域是一个( )A、三角形 B、梯形 C、矩形 D、菱形B2021/8/9 星期一3 二元一次不等式: Ax+By+C0或Ax+By+C0或Ax+By+C0表示哪一侧的区域。 一般在C0时,取原点作为特殊点。直线定界,特殊点定域2021/8/9 星期一4应该注意的几个问题:1、若不等号中不含等号,则边界 应画成虚线,否则应画成实线。2、画图时应非常准确,否则将 得不到正确结果。2021/8/9 星期一5强化练习: 不等式组 ,求它所表示 的平面区域的面积。1、求Z=2x+y 的最大值和最小值;202

2、1/8/9 星期一6有关概念 由x,y 的不等式(或方程)组成的不等式组称为x,y 的约束条件。关于x,y 的一次不等式或方程组成的不等式组称为x,y 的线性约束条件。欲达到最大值或最小值所涉及的变量x,y 的解析式称为目标函数。关于x,y 的一次目标函数称为线性目标函数。求线性目标函数在线性约束条件下的最大值或最小值问题称为线性规划问题。满足线性约束条件的解(x,y)称为可行解。所有可行解组成的集合称为可行域。使目标函数取得最大值或最小值的可行解称为最优解。2021/8/9 星期一7解线性规划问题的步骤: (2)移:在线性目标函数所表示的一组平行 线中,利用平移的方法找出与可行 域有公共点且

3、纵截距最大或最小的 直线; (3)求:通过解方程组求出最优解; (4)答:作出答案。 (1)画:画出线性约束条件所表示的可行域;2021/8/9 星期一8强化练习: 不等式组 ,求它所表示 的平面区域的面积。1、在上述的条件下,求Z=2x+y 的最大值 和最小值;2、在上述的条件下,求K= 的取值范围。 3、在上述的条件下,若U-1= 求U的最小值。 2021/8/9 星期一9线性规划的应用: 例1: 已知函数 满足 求 的取值范围。2021/8/9 星期一10 某公司承担了每天至少搬运280t水泥的任务,已知该公司有6辆A型卡车和4辆B型卡车,已知A型卡车每天每辆的运载量为30t,成本费为0

4、.9千元,B型卡车每天每辆的运载量为40t,成本费为1千元。 (1)假设你是公司的调度员,请你按要求设计出公司每天的派车方案。Z =0.9x + y3x+4y280 x60y4例2:(2)设每天派出A型卡车x辆,B型卡车y辆,公司每天花费成本为Z千元,写出x、y应满足的条件以及Z与x、y之间的函数关系式。方案方案一方案二方案三方案四A型卡车B型卡车445464632021/8/9 星期一11某公司承担了每天至少搬运280t水泥的任务,已知该公司有6辆A型卡车和B型卡车,已知A型卡车每天每辆的运载量为30t,成本费为0.9千元,B型卡车每天每辆的运载量为40t,成本费为1千元。(1)假设你是公司

5、的调度员,请你按要求设计出公司每天的排车方案。(2)设每天派出A型卡车x辆,B型卡车y辆,公司每天花费成本为Z千元,写出x、y应满足的条件以及Z与x、y之间的函数关系式。(3)如果你是公司的经理,为使公司所花的成本费最小,每天应派出A型卡车、B型卡车各为多少辆?2021/8/9 星期一12本节小结:、明确高考考纲对本节内容的要求:了解 二元一次不等式表示平面区域;了解线性规划的意义,并会简单的应用。、解决线性规划有关的问题关键是准确的作出可行域,在生产实际问题中,要准确的列出约束条件不等式及目标函数。 、通过线性规划的图解法,大家要领悟数 形结合在数学解题中的重要性。2021/8/9 星期一13高考题赏析1、(2003年北京春)在直角坐标系xoy中,已知 三边所在直线的方程分别为 则 内部和边上的整点(即横、纵坐标均为整数的点)的总个数是( )(A)95 (B)91 (C)88 (D)75B2021/8/9 星期一142、(2004年黄冈)某工厂生产A和B两种产品,已知制造产品A1kg,要用煤9t,电力4kW,劳动力3个,能创造经济价值7万元;制造产品B1kg,要用煤4t,电力5kw,劳动力10个,能创造经济价值12万元。现在该工厂有煤360t,电力200kw,劳动力300个,问在这种限制条件下,应该生产产品A、B各多少kg,才能使所创造的总的经济价值最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论