广东省深圳福田区五校联考2022-2023学年八年级数学第一学期期末质量跟踪监视试题含解析_第1页
广东省深圳福田区五校联考2022-2023学年八年级数学第一学期期末质量跟踪监视试题含解析_第2页
广东省深圳福田区五校联考2022-2023学年八年级数学第一学期期末质量跟踪监视试题含解析_第3页
广东省深圳福田区五校联考2022-2023学年八年级数学第一学期期末质量跟踪监视试题含解析_第4页
广东省深圳福田区五校联考2022-2023学年八年级数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年八上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题3分,共30分)1若,则等于( )ABCD2多项式分解因式的结果是( )ABCD3点先向左平移个单位长度,再向上平移个单位长度得到的点的坐标是( )ABCD4如图,点D、E在ABC的边BC上,ABDACE,下列结论不一定成立的是( )ABCD5估计的值在( )A2和3之间B3和4之间C4和5之间D5和6之间6甲、乙、丙

2、、丁四人进行射箭测试,每人次射箭成绩的平均数都是环,方差分别是,则本次测试射箭成绩最稳定的是( )A甲B乙C丙D丁7下列四组线段中,可以构成直角三角形的是( )A4,5,6B1.5,2,2.5C2,3,4D1, 38已知三角形三边长分别为2,x,5,若x为整数,则这样的三角形个数为()A2B3C4D59若函数是正比例函数,则的值是( )A-3B1C-7D310已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是()AOE=DCBOA=OCCBOE=OBADOBE=OCE二、填空题(每小题3分,共24分)11a,b,c为ABC的三边,化简|a-b-c|-|a

3、+b-c|+2a结果是_.12要使分式有意义,则x的取值范围是_13如图,CD是的角平分线,于E,的面积是9,则的面积是_.14如图,在中,为的中点,点为上一点,、交于点,若,则的面积为_15当直线经过第二、三、四象限时,则的取值范围是_16如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B、C、D的面积依次为4、3、9,则正方形A的面积为_17若等腰三角形的顶角为,则它腰上的高与底边的夹角是_度18教材上“阅读与思考”曾介绍“杨辉三角”(如图),利用“杨辉三角”展开(12x)4a0+a1x+a2x2+a3x3+a4x4,那么a1+a2+a3+a4_三、解答题(共66分)

4、19(10分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全频数分布直方图;(2)表示户外活动时间1小时的扇形圆心角的度数是多少;(3)本次调查学生参加户外活动时间的众数是多少,中位数是多少;(4)本次调查学生参加户外活动的平均时间是否符合要求?20(6分)如图,在中,点分别在边上,与交于点,已知;求证:是等腰三角形21(6分)在图示的方格纸中(1)作出ABC关于MN对称的图形A1B1C1;(2)说明

5、A2B2C2是由A1B1C1经过怎样的平移得到的?22(8分)某商店用1000元人民币购进某种水果销售,过了一周时间,又用 2 400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的价格贵了2元(1)该商店第一次购进这种水果多少千克?(2)假设该商店两次购进的这种水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售若两次购进的这种水果全部售完,利润不低于950元,则每千克这种水果的标价至少是多少元?23(8分) (1)解方程:2;(2)设ykx,且k0,若代数式(x3y)(2xy)y(x5y)化简的结果为2x2,求k的值24(8分)如图,在平面直角坐标

6、中,已知A(1,5),B(3,0),C(4,3)(1)在图中作出ABC关于y轴对称的图形ABC;(2)如果线段AB的中点是P(2,m),线段AB的中点是(n1,2.5)求m+n的值(3)求ABC的面积25(10分)公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)应聘者阅读能力思维能力表达能力甲859080乙958095若将阅读能力、思维能力和表达能力三项测试得分按131的比确定每人的最后成绩,谁将被录用?26(10分)列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本

7、电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?参考答案一、选择题(每小题3分,共30分)1、A【分析】由题意根据同底数幂的除法即底数不变指数相减进行计算【详解】解:.故选:A.【点睛】本题考查同底数幂的除法,掌握同底数幂的除法运算法则是解答本题的关键2、A【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:;故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.3、B【分析】直接利用平移中点的变化规律求解即可,平移中点的变化

8、规律是:横坐标右移加,左移减;纵坐标上移加,下移减【详解】2-3=-1,-1+2=1,得到的点的坐标是(-1,1).故选B.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加4、A【分析】根据全等三角形的对应边相等、对应角相等逐一判断即可【详解】ABDACE,BD=CE,BE=CD,故B成立,不符合题意;ADB=AEC,ADE=AED,故C成立,不符合题意;BAD=CAE,BAE=CAD,故D成立,不符合题意;AC不一定等于CD,故A不成立,符合题意故选:A【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相

9、等是解题的关键5、D【详解】解:253331,51故选D【点睛】此题主要考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法6、D【分析】根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小,则谁的射箭成绩最稳定【详解】甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是9.1环,方差分别是,丁的方差最小,射箭成绩最稳定的是丁故选:D【点睛】此题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,

10、即波动越小,数据越稳定在解题时要能根据方差的意义和本题的实际,得出正确结论是本题的关键7、B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=4162,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=1342,不可以构成直角三角形,故本选项错误;D、,不可以构成直角三角形,故本选项错误故选B考点:勾股定理的逆定理8、B【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边,据此解答即可【详解】解:由题意可得,52x52,解得1x7,x为整数,x为4、

11、5、6,这样的三角形个数为1故选:B【点睛】本题考查了三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;运用三角形的三边关系定理是解答的关键9、A【分析】根据正比例函数的性质可得,解得即可.【详解】解:根据正比例函数的性质可得.解得.故选: A.【点睛】此题主要考察了正比例函数的定义,解题的关键是掌握正比例函数的定义条件: ,为常数且,自变量次数为1.10、D【解析】由平行四边形的性质和三角形中位线定理得出选项A、B、C正确;由OBOC,得出OBEOCE,选项D错误;即可得出结论解:四边形ABCD是平行四边形,OA=OC,OB=OD,ABDC,又点E是BC的中点,OE是BCD的中位

12、线,OE=DC,OEDC,OEAB,BOE=OBA,选项A、B、C正确;OBOC,OBEOCE,选项D错误;故选D“点睛”此题考查了平行四边形的性质,还考查了三角形中位线定理,解决问题的方法是采用排除法解答二、填空题(每小题3分,共24分)11、2c【分析】根据三角形三边关系,确定a-b-c,a+b-c的正负,然后去绝对值,最后化简即可.【详解】解:a,b,c为ABC的三边a-b-c=a-(b+c)0,a+b-c=(a+b)-c0|a-b-c|-|a+b-c|+2a=-(a-b-c)-(a+b-c)+2a=b+c-a-a-b+c+2a=2c【点睛】本题考查了三角形三边关系的应用,解答的关键在于

13、应用三角形的三边关系判定a-b-c,a+b-c的正负.12、【解析】根据分式有意义的条件,则: 解得: 故答案为【点睛】分式有意义的条件:分母不为零.13、3【分析】延长AE与BC相交点H ,先用ASA证明AECHEC,则SHEC = SAEC,求出BH,CH的长度,利用ABC的面积为9,求出ACH的面积为6,即可得到的面积.【详解】解:延长AE与BC相交点H ,如图所示CD平分ACBACD=BCDAECDAEC=HEC在AEC和HEC中AECHEC(ASA)AC=CHSHEC = SAECBC=6 ,AC=4BH=2 ,CH=4过A作AKBC,则,BC=6,AK=3,SHCA=,SHEC =

14、 SAEC=3;故答案为:3.【点睛】本题考查了全等三角形的判定和性质,三角形的角平分线定义,以及三角形面积的计算,熟练掌握全等三角形的判定和性质,正确求出AK的长度是解题的关键.14、1【分析】根据E为AC的中点可知,SABE=SABC,再由BD:CD=2:3可知,SABD=SABC,进而可得出结论【详解】解:点E为AC的中点,SABE=SABCBD:CD=2:3,SABD=SABC,SAOE-SBOD=1,SABE-SABD =SABC-SABC=1,解得SABC=1故答案为:1【点睛】本题考查的是三角形的面积,熟知三角形的中线将三角形分为面积相等的两部分是解答此题的关键15、.【分析】根

15、据一次函数,时图象经过第二、三、四象限,可得,即可求解;【详解】经过第二、三、四象限,故答案为.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数,与对函数图象的影响是解题的关键16、1【解析】根据勾股定理的几何意义:得到S正方形A+S正方形B=S正方形E,S正方形DS正方形C=S正方形E,求解即可【详解】由题意:S正方形A+S正方形B=S正方形E,S正方形DS正方形C=S正方形E,S正方形A+S正方形B=S正方形DS正方形C正方形B,C,D的面积依次为4,3,9,S正方形A+4=93,S正方形A=1故答案为1【点睛】本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平

16、方和等于斜边的平方17、1【分析】已知给出了等腰三角形的顶角为100,要求腰上的高与底边的夹角可以根据等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半求解【详解】等腰三角形的顶角为100根据等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半;高与底边的夹角为1故答案为1【点睛】本题考查了等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半;作为填空题,做题时可以应用一些正确的命题来求解18、1【分析】令求出的值,再令即可求出所求式子的值【详解】解:令,得:,令,得:,则,故答案为:1【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键三、

17、解答题(共66分)19、(1)频数分布直方图如图所示;见解析;(2)在扇形统计图中的圆心角度数为144;(3)1小时,1小时;(4)平均活动时间符合要求【分析】(1)先根据条形统计图和扇形统计图的数据,由活动时间为0.5小时的数据求出参加活动的总人数,然后求出户外活动时间为1.5小时的人数;(2)先根据户外活动时间为1小时的人数,求出其占总人数的百分比,然后算出其在扇形统计图中的圆心角度数;(3)根据中位数和众数的概念,求解即可(4)根据平均时间=总时间总人数,求出平均时间与1小时进行比较,然后判断是否符合要求;【详解】(1)调查总人数为:1020%=50(人),户外活动时间为1.5小时的人数

18、为:5024%=12(人),频数分布直方图如右图所示;(2)户外活动时间为1小时的人数占总人数的百分比为:100%=40%,在扇形统计图中的圆心角度数为:40%360=144(3)将50人的户外活动时间按照从小到大的顺序排列,可知第25和第26人的户外运动时间都为1小时,故本次户外活动时间的中位数为1小时;由频数分布直方图可知,户外活动时间为1小时的人数最多,故本次户外活动时间的众数为1小时(4)户外活动的平均时间为:(100.5+201+121.5+82)=1.18(小时),1.181,平均活动时间符合要求【点睛】本题考查的是统计图,熟练掌握直方图和扇形统计图是解题的关键.20、见解析【分析

19、】根据已知条件求证EBODCO,然后可得OBC=OCB再利用两角相等即可判定ABC是等腰三角形【详解】解:在EBO与DCO中,EBODCO(AAS),OB=OC,OBC=OCB,ABC=ACB,AB=AC,ABC是等腰三角形【点睛】本题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型21、(1)见解析;(2)见解析.【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答【详解】(1)A1B1C1如图所示:(2)向右平移6个单位,再向下平移2个单位(或向

20、下平移2个单位,再向右平移6个单位)22、(1)该商店第一次购进水果1千克;(2)每千克这种水果的标价至少是2元【分析】(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据每千克的价格比第一次购进的价格贵了2元,列出方程求解即可;(2)设每千克水果的标价是y元,然后根据两次购进水果全部售完,利润不低于950元列出不等式,然后求解即可得出答案【详解】(1)设该商店第一次购进水果x千克,则第二次购进这种水果2x千克由题意,得,解得x=1经检验,x=1是所列方程的解答:该商店第一次购进水果1千克(2)设每千克这种水果的标价是 y 元,则(1+1220)y+200.5 y10+2400+950,解得y2答:每千克这种水果的标价至少是2元【点睛】此题考查了分式方程的应用,一元一次不等式的应用,分析题意,找到合适的等量关系与不等关系是解决问题的关键23、 (1)原分式方程的解为x7;(1)k的值为1.【解析】试题分析:(1)直接去分母,进而解分式方程得出答案;(1)首先利用多项式乘法去括号,进而合并同类项得出答案试题解析:(1)去分母得:1-1(x-3)=-3x,解得:x=-7,检验:当x=-7时,x-30,故x=-7是原方程的解;(1)(x-3y)(1x+y)+y(x+5y)=1x1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论