版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,在ABC中,DEBC,AD8,DB4,AE6,则EC的长为()A1B2C3D42在平面直角坐标系中,对于二次函数,下列说法中错误的是( )A的最小值为1B图象顶点坐标为,对称轴为
2、直线C当时,的值随值的增大而增大,当时,的值随值的增大而减小D当时,的值随值的增大而减小,当时,的值随值的增大而增大3如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()ABCD4如图,在半径为的中,弦长,则点到的距离为( )ABCD5若二次函数yx2+4x+n的图象与x轴只有一个公共点,则实数n的值是()A1B3C4D66如图, AB为O的直径,弦CDAB于点E,连接AC,OC,OD,若A20,则COD的度数为( )A40B60C80D1007如图,在菱形中,则对角线等于( )A2B4C6D88如图,在RtABC中,ACB=90,如果AC=3,AB=5,那么sinB等于()ABC
3、D9若关于的方程的解为,则方程的解为( )ABCD10如图,点D在以AC为直径的O上,如果BDC20,那么ACB的度数为( )A20B40C60D70二、填空题(每小题3分,共24分)11如图,在ABC中,AC=6,BC=10,点D是AC边上的动点(不与点C重合),过点D作DEBC,垂足为E,点F是BD的中点,连接EF,设CD=x,DEF的面积为S,则S与x之间的函数关系式为_12若方程x22x10的两根分别为x1,x2,则x1+x2x1x2的值为_13若一个正六边形的周长为24,则该正六边形的面积为 14已知:如图,分别切于,点若,则的周长为_15函数y(m为常数)的图象上有三点(1,y1)
4、、,则函数值y1、y2、y3的大小关系是_(用“”符号连接)16如图所示,一个质地均匀的小正方体有六个面,小明要给这六个面分别涂上红色、黄 色和蓝色三种颜色.在桌面上掷这个小正方体,要使事件“红色朝上”的概率为,那么需要把_个面涂为红色17如图,在ABC中DEBC,点D在AB边上,点E在AC边上,且AD:DB2:3,四边形DBCE的面积是10.5,则ADE的面积是_18抛物线在对称轴左侧的部分是上升的,那么的取值范围是_.三、解答题(共66分)19(10分)如图,在钝角中,点为上的一个动点,连接,将射线绕点逆时针旋转,交线段于点. 已知C=30,CA=2 cm,BC=7cm,设B,P两点间的距
5、离为xcm,A,D两点间的距离ycm. 小牧根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小牧探究的过程,请补充完整:(1)根据图形.可以判断此函数自变量X的取值范围是 ;(2)通过取点、画图、测量,得到了与的几组值,如下表:0.511.021.913.4734.164.473.973.222.421.66a2.022.50通过测量。可以得到a的值为 ;(3)在平而直角坐标系xOy中.描出上表中以各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当AD=3.5cm时,BP的长度约为 cm.20(6分)如图,在淮河的右岸边有一高楼,左岸边有一坡度
6、的山坡,点与点在同一水平面上,与在同一平面内.某数学兴趣小组为了测量楼的高度,在坡底处测得楼顶的仰角为,然后沿坡面上行了米到达点处,此时在处测得楼顶的仰角为,求楼的高度.(结果保留整数)(参考数) 21(6分)在中,以直角边为直径作,交于点,为的中点,连接、(1)求证:为切线(2)若,填空:当_时,四边形为正方形;当_时,为等边三角形22(8分)已知抛物线经过A(0,2)、B(4,0)、C(5,-3)三点,当时,其图象如图所示(1)求该抛物线的解析式,并写出该抛物线的顶点坐标;(2)求该抛物线与轴的另一个交点的坐标23(8分)已知:抛物线y2ax2ax3(a+1)与x轴交于点AB(点A在点B的
7、左侧)(1)不论a取何值,抛物线总经过第三象限内的一个定点C,请直接写出点C的坐标;(2)如图,当ACBC时,求a的值和AB的长;(3)在(2)的条件下,若点P为抛物线在第四象限内的一个动点,点P的横坐标为h,过点P作PHx轴于点H,交BC于点D,作PEAC交BC于点E,设ADE的面积为S,请求出S与h的函数关系式,并求出S取得最大值时点P的坐标24(8分)图1,图2分别是一滑雪运动员在滑雪过程中某一时刻的实物图与示意图,已知运动员的小腿与斜坡垂直,大腿与斜坡平行,且三点共线,若雪仗长为,求此刻运动员头部到斜坡的高度(精确到)(参考数据:)25(10分)已知:内接于,连接并延长交于点,交于点,
8、满足(1)如图1,求证:;(2)如图2,连接,点为弧上一点,连接,=,过点作,垂足为点,求证:;(3)如图3,在(2)的条件下,点为上一点,分别连接,过点作,交于点,连接,求的长26(10分)如图1,直线AB与x、y轴分别相交于点B、A,点C为x轴上一点,以AB、BC为边作平行四边形ABCD,连接BD,BDBC,将AOB沿x轴从左向右以每秒一个单位的速度运动,当点O和点C重合时运动停止,设AOB与BCD重合部分的面积为S,运动时间为t秒,S与t之间的函数如图(2)所示(其中0t2,2tm,mtn时函数解析式不同)(1)点B的坐标为 ,点D的坐标为 ;(2)求S与t的函数解析式,并写出t的取值范
9、围参考答案一、选择题(每小题3分,共30分)1、C【分析】根据平行线所截的直线形成的线段的比例关系,可得,代数解答即可.【详解】解:由题意得, ,解得.【点睛】本题考查了平行线截取直线所得的对应线段的比例关系,理解掌握该比例关系列出比例式是解答关键.2、C【分析】根据,可知该函数的顶点坐标为(2,1),对称轴为x=2,最小值为1,当x2时,y随x的增大而减小,当x2时,y随x的增大而增大,进行判断选择即可.【详解】由题意可知,该函数当x2时,y随x的增大而减小,当x2时,y随x的增大而增大,故C错误,所以答案选C.【点睛】本题考查的是一元二次函数顶点式的图像性质,能够根据顶点式得出其图像的特征
10、是解题的关键.3、C【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可详解:从左边看竖直叠放2个正方形故选:C点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项4、B【分析】过点O作OCAB于点C,由在半径为50cm的O中,弦AB的长为50cm,可得OAB是等边三角形,继而求得AOB的度数,然后由三角函数的性质,求得点O到AB的距离【详解】解:过点O作OCAB于点C,如图所示:OA=OB=AB=50cm,OAB是等边三角形,OAB=60,OCAB故选:B【点睛】此题考查了垂径
11、定理、等边三角形的判定与性质、三角函数,熟练掌握垂径定理,证明OAB是等边三角形是解决问题的关键5、C【分析】二次函数y=x2+4x+n的图象与轴只有一个公共点,则,据此即可求得【详解】,根据题意得:,解得:n=4,故选:C【点睛】本题考查了抛物线与轴的交点,二次函数(a,b,c是常数,a0)的交点与一元二次方程根之间的关系决定抛物线与轴的交点个数0时,抛物线与x轴有2个交点;时,抛物线与轴有1个交点;0时,抛物线与轴没有交点6、C【分析】利用圆周角与圆心角的关系得出COB=40,再根据垂径定理进一步可得出DOB=COB,最后即可得出答案.【详解】A=20,COB=2A=40,CDAB,OC=
12、OD,DOB=COB=40,COD=DOB+COB=80.故选:C.【点睛】本题主要考查了圆周角、圆心角与垂径定理的综合运用,熟练掌握相关概念是解题关键.7、A【分析】由菱形的性质可证得为等边三角形,则可求得答案【详解】四边形为菱形,为等边三角形,故选:【点睛】主要考查菱形的性质,利用菱形的性质证得为等边三角形是解题的关键8、A【解析】直接利用锐角三角函数关系得出sinB的值【详解】在RtABC中,ACB=90,AC=3,AB=5,sinB= 故选A【点睛】此题主要考查了锐角三角函数关系,正确把握定义是解题关键9、C【分析】设方程中,根据已知方程的解,即可求出关于t的方程的解,然后根据即可求出
13、结论【详解】解:设方程中,则方程变为关于的方程的解为,关于的方程的解为,对于方程,或3解得:,故选C【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键10、D【分析】由AC为O的直径,可得ABC90,根据圆周角定理即可求得答案.【详解】AC为O的直径,ABC90,BACBDC20,.故选:D.【点睛】本题考查了圆周角定理,正确理解直径所对的圆周角是直角,同圆或等圆中,同弧或等弧所对的圆周角相等是解题的关键.二、填空题(每小题3分,共24分)11、【分析】可在直角三角形CED中,根据DE、CE的长,求出BED的面积即可解决问题【详解】在RtCDE中,CD=x,点F是B
14、D的中点,故答案为【点睛】本题考查解直角三角形,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型12、1【解析】根据题意得x1+x2=2,x1x2=1,所以x1+x2x1x2=2(1)=1故答案为113、【解析】根据题意画出图形,如图,连接OB,OC,过O作OMBC于M,BOC=360=60OB=OC,OBC是等边三角形OBC=60正六边形ABCDEF的周长为21,BC=216=1OB=BC=1,BM=OBsinOBC =114、【分析】根据切线长定理由PA、PB分别切O于A、B得到PB=PA=10cm,由于DC与O相切于E,再根据切线长定理得到CA=CE,DE=DB,然后三
15、角形周长的定义得到PDC的周长=PD+DC+PC=PD+DB+CA+PC,然后用等线段代换后得到三角形PDC的周长等于PA+PB【详解】PA、PB分别切O于A、B,PB=PA=10cm,CA与CE为的切线,CA=CE,同理得到DE=DB,PDC的周长=PD+DC+PC=PD+DB+CA+PCPDC的周长=PA+PB=20cm,故答案为20cm【点睛】本题考查了切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角15、y2y1y1【分析】根据反比例函数的比例系数的符号可得反比例函数所在象限为一、三,其中在第三象限的点的纵坐标总小于在第一象限的纵坐标,进而
16、判断在同一象限内的点(1,y1)和(,y2)的纵坐标的大小即可【详解】解:反比例函数的比例系数为m2+10,图象的两个分支在一、三象限;第三象限的点的纵坐标总小于在第一象限的纵坐标,点(1,y1)和(,y2)在第三象限,点(,y1)在第一象限,y1最小,1,y随x的增大而减小,y1y2,y2y1y1故答案为y2y1y1【点睛】考查反比例函数图象上点的坐标特征;用到的知识点为:反比例函数的比例系数小于0,图象的2个分支在一、三象限;第三象限的点的纵坐标总小于在第一象限的纵坐标;在同一象限内,y随x的增大而减小16、【分析】根据题意可知共有6种等可能结果,所以要使事件“红色朝上”的概率为,则需要有
17、2种符合题意的结果,从而求解.【详解】解:一个质地均匀的小正方体有六个面在桌面上掷这个小正方体,共有6种等可能结果,其中把2个面涂为红色,则使事件“红色朝上”的概率为故答案为:2【点睛】本题考查简单的概率计算,理解概率的概念并根据概率的计算公式正确计算是本题的解题关键.17、1【分析】由AD:DB1:3,可以得到相似比为1:5,所以得到面积比为4:15,设ADE的面积为4x,则ABC的面积为15x,故四边形DBCE的面积为11x,根据题意四边形的面积为10.5,可以求出x,即可求出ADE的面积【详解】DEBC,AD:DB=1:3相似比=1:5面积比为4:15设ADE的面积为4x,则ABC的面积
18、为15x,故四边形DBCE的面积为11x11x=10.5,解得x=0.5ADE的面积为:40.5=1故答案为:1【点睛】本题主要考查了相似三角形,熟练面积比等于相似比的平方以及准确的列出方程是解决本题的关键18、【分析】利用二次函数的性质得到抛物线开口向下,则a-10,然后解不等式即可【详解】抛物线y=(a-1)x1在对称轴左侧的部分是上升的,抛物线开口向下,a-10,解得a1故答案为a1【点睛】此题考查二次函数图象与系数的关系,解题关键在于掌握二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号
19、时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右三、解答题(共66分)19、(1)0 x 5;(2)1.74;(3)见解析;(4)0.8或者4.8.【分析】(1)考虑点P的临界位置APB=60时,D与B重合,计算出此时的PB长,即可知x的取值范围;(2)根据图形测量即可;(3)描点连线即可;(4)画直线y=3.5与图象的交点即可观察出x的值.【详解】(1)如图1,当APB=60时,D与B重合,作PEAC于E,C=30,APB=60,CAP=30,PC=AP,CE=AE=,PC=2,PB=5,0 x 5 ;(2)测量得a=1.74;(3)如下图所示, (4观察图象可知,当y=3.5时 x=0
20、.8或者4.8.【点睛】本题考查了旋转的性质、等腰三角形的性质以及描点法画函数图象,利用图象求近似值,体现了特殊到一般,再由一般到特殊的思想方法.20、24米【分析】由i=,DE2+EC2=CD2,解得DE=5m,EC=m,过点D作DGAB于G,过点C作CHDG于H,则四边形DEBG、四边形DECH、四边形BCHG都是矩形,证得AB=BC,设AB=BC=xm,则AG=(x-5)m,DG=(x+)m,在RtADG中,=tanADG,代入即可得出结果【详解】解:在RtDEC中,i=,DE2+EC2=CD2,CD=10,DE2+(DE)2=102,解得:DE=5(m),EC=m,过点D作DGAB于G
21、,过点C作CHDG于H,如图所示:则四边形DEBG、四边形DECH、四边形BCHG都是矩形,ACB=45,ABBC,AB=BC,设AB=BC=xm,则AG=(x-5)m,DG=(x+)m,在RtADG中,=tanADG,解得:x=15+524,答:楼AB的高度为24米【点睛】本题考查了解直角三角形的应用-方向角问题,通过解直角三角形得出方程是解题的关键21、(1)证明见解析;(2)2;【分析】(1)连接,根据为斜边的中线得出,进而证明得出即得(2)根据正方形的判定,只需要即得;根据等边三角形的判定,只需要即得【详解】(1)证明:如图,连接,为直径为斜边的中线, 为的切线(2)当DE=2时由(1
22、),得四边形为菱形四边形为正方形当时为切线由(1),为切线为的中点OD=OB为等边三角形【点睛】本题是圆的综合题型,考查了圆周角定理、切线判定、切线长定理、正方形的判定、等边三角形的判定及全等三角形的判定及性质,解题关键是熟知:直径所对的圆周角是直角,经过半径外端点并且垂直于这条半径的直线是圆的切线22、(1),顶点坐标为;(2)图象与的另一个交点的坐标为(-1,0)【分析】(1)把A、B、C三点的坐标代入抛物线,解方程组即可;将抛物线化成顶点式即可得出顶点坐标; (2)令y=0,得到方程,解方程即可【详解】解:(1)依题意,得,解得,抛物线的解析式为,顶点坐标为(2)令,解得:,图象与的另一
23、个交点的坐标为(-1,0)【点睛】本题考查了抛物线的解析式、与x轴的交点:掌握待定系数法求函数解析式,和把求二次函数(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解题的关键23、(1)第三象限内的一个定点C为(1,3);(2)a,AB;(3)Sh2+h,当h时,S的最大值为,此时点P(, )【分析】(1)对抛物线解析式进行变形,使a的系数为0,解出x的值,即可确定点C的坐标;(2)设函数对称轴与x轴交点为M,根据抛物线的对称轴可求出M的坐标,然后利用勾股定理求出CM的长度,再利用直角三角形的斜边的中线等于斜边的一半求出AB的长度,则A,B两点的坐标可求,再将A,B
24、两点代入解析式中即可求出a的值;(3)过点E作EFPH于点F,先用待定系数法求出直线BC的解析式,然后将P,D的坐标用含h的代数式表示出来,最后利用SSABESABDAB(yDyE)求解【详解】(1)y2ax2ax3(a+1)a(2x2x3)3,令2x2x30,解得:x或1,故第三象限内的一个定点C为(1,3);(2)函数的对称轴为:x,设函数对称轴与x轴交点为M,则其坐标为:(,0),则由勾股定理得CM,则AB2CM , 则点A、B的坐标分别为:(3,0)、(,0);将点A的坐标代入函数表达式得:18a+3a3a30,解得:a ,函数的表达式为:y(x+3)(x)x2x ;(3)过点E作EF
25、PH于点F,设:ABC,则ABCHPEDEF,设直线BC的解析式为 将点B、C坐标代入一次函数表达式得 解得: 直线BC的表达式为:,设点P(h,),则点D(h,),故tanABCtan ,则sin ,yDyEDEsinPDsinsin,SSABESABDAB(yDyE)0,S有最大值,当h 时,S的最大值为:,此时点P()【点睛】本题主要考查二次函数与一次函数的综合题,掌握二次函数的图象和性质,勾股定理,待定系数法是解题的关键.24、1.3m【分析】由三点共线,连接GE,根据EDAB,EFAB,求出GEF=EDM=90,利用锐角三角函数求出GE,根据直角三角形30角所对的直角边等于斜边的一半
26、求出DE,即可得到答案.【详解】三点共线,连接GE,EDAB,EFAB,GEF=EDM=90,在RtGEF中,GFE=62,m,在RtDEM中,EMD=30,EM=1m,ED=0.5m,h=GE+ED=0.75+0.5m,答:此刻运动员头部到斜坡的高度约为1.3m.【点睛】此题考查平行线的性质,锐角三角函数的实际应用,根据题意构建直角三角形是解题的关键.25、(1)证明见解析;(2)证明见解析;(3)【分析】(1)如图1中,连接AD设BEC=3,ACD=,再根据圆周角定理以及三角形内角和与外角的性质证明ACB=ABC即可解决问题;(2)如图2中,连接AD,在CD上取一点Z,使得CZ=BD证明A
27、DBAZC(SAS),推出AD=AZ即可解决问题;(3)连接AD,PA,作OKAC于K,ORPC于R,CTFP交FP的延长线于T假设OH=a,PC=2a,求出sinOHK=,从而得出OHK=45,再根据角度的转化得出DAG=ACO=OAK,从而有tanACD=tanDAG=tanOAK=,进而可求出DG,AG的长,再通过勾股定理以及解直角三角形函数可求出FT,PT的长即可解决问题【详解】(1)证明:如图1中,连接AD设BEC=3,ACD=BEC=BAC+ACD,BAC=2,CD是直径,DAC=90,D=90-,B=D=90-,ACB=180-BAC-ABC=180-2-(90-)=90-ABC
28、=ACB,AB=AC(2)证明:如图2中,连接AD,在CD上取一点Z,使得CZ=BD=,DB=CF,DBA=DCA,CZ=BD,AB=AC,ADBAZC(SAS),AD=AZ,AGDZ,DG=GZ,CG=CZ+GZ=BD+DG=CF+DG(3)解:连接AD,PA,作OKAC于K,ORPC于R,CTFP交FP的延长线于TCPAC,ACP=90,PA是直径,ORPC,OKAC,PR=RC,ORC=OKC=ACP=90,四边形OKCR是矩形,RC=OK,OH:PC=1:,可以假设OH=a,PC=2a,PR=RC=a,RC=OK=a,sinOHK=,OHK=45OHDH,DHO=90,DHA=180-90-45=45,CD是直径,DAC=90,ADH=90-45=45,DHA=ADH,AD=AH,COP=AOD,AD=PC,AH=AD=P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年农村供用热力合同协议
- 2026年购房合同协议2026年
- 2026年美妆品牌形象授权合作合同
- 2026年仓储中心租赁合同协议
- 2026年环保纺织品销售合同协议
- 房屋买卖合同2026年解除条件
- 2026年电商运营服务合同协议
- 2026年客厅装修合同协议
- 2026年人力资源主管竞业限制合同
- 2026年家政雇佣合同
- 2021-2022学年天津市滨海新区九年级上学期物理期末试题及答案
- 江苏省苏州市、南京市九校2025-2026学年高三上学期一轮复习学情联合调研数学试题(解析版)
- 2026年中国医学科学院医学实验动物研究所第三批公开招聘工作人员备考题库及答案详解一套
- 2025年幼儿园教师业务考试试题及答案
- 国家开放大学《Python语言基础》形考任务4答案
- (自2026年1月1日起施行)《增值税法实施条例》重点解读
- 2026春小学科学教科版(2024)三年级下册《4.幼蚕在生长》教学设计
- 管道安装协议2025年
- 2026年内蒙古商贸职业学院单招综合素质考试题库附答案详解
- 2026年护理部工作计划
- 食管癌影像学表现及TNM分期课件
评论
0/150
提交评论