版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第17章(Mechanicalwave)
(6)1机械振动在弹性媒质中的传播过程称为机械波,如声波、水波、地震波等。变化的电磁场在空间的传播称为电磁波,如无线电波、光波、X射线等。本章主要讨论机械波。
重点:行波方程。波动—振动状态的传播过程。行波振动状态沿一定方向传播的波。核心:位相。2
在弹性媒质中,各质点之间是以弹性力相互联系着的。1.机械波的产生和传播§17-1波动的基本概念
产生机械波的条件:
波源—产生机械振动;
弹性媒质—传播振动状态。当媒质中的一个质点开始振动后,在弹性力的作用下,就会带动邻近质点振动,邻近质点又带动更远质点振动。这样依次带动,就把振动由近及远地传播出去,形成了波动。u3图17-14
应当注意,在波的传播过程中,媒质中的质点并不“随波逐流”,它们在各自的平衡位置附近振动;传播的是波源的振动状态。
显然,沿着波的传播方向,振动是依次落后的。P点比o点时间落后:P点比o点位相落后:(这里:u是波速)52.波面和波线波线(波射线)—波的传播方向。
波面(波阵面)—波动过程中,振动位相相同的点连成的面。最前面的那个波面称为波前。
平面波—波面为平面的波动。本章只讨论这种波。
球面波—波面为球面的波动。在各向同性媒质中,波线总是与波面垂直。
横波—质点的振动方向与波的传播方向相互垂直。
纵波—质点的振动方向和波的传播方向相互平行。波面图17-36
1.波速u—振动状态(位相)的传播速度,又称相速。波速完全由媒质的性质(弹性和惯性)来确定。如液体、气体中的纵波,波速:容变弹性模量质量密度(惯性)固体中的横波,波速:切变弹性模量纵波,波速:杨氏弹性模量柔绳中的横波,波速:绳中的张力质量线密度§17-2描述波动的物理量7
2.波的周期T—媒质质元完成一次全振动的时间。波的周期完全由波源(周期)确定。频率=1/T。
3.波长—一个周期内波动传播的距离。
周期T反映波的时间周期性,而波长反映的是波的空间周期性。显然,周期T也就是波传播一个波长距离所需的时间。(17-1)
4.平面简谐波—波面为平面,媒质中各质点都作同频率的简谐振动形成的波动。本章主要讨论这种波。8§17-3惠更斯原理
媒质中波动传播到的各点,都可以看作是发射子波的波源,其后任一时刻,这些子波的包迹就是新的波阵面。这就是惠更斯原理。作用:知道某一时刻的波阵面,用几何作图的方法就能确定下一时刻的波阵面,从而确定波的传播方向。图17-49惠更斯原理的不足:不能求出波的强度分布。图17-5
用惠更斯原理可以解释波的衍射现象。所谓波的衍射是指波在传播过程中遇到障碍物时,其传播方向发生改变,能绕过障碍物的边缘继续前进且强度重新分布的现象。
我们用惠更斯原理画出了新的波阵面及波的传播方向。很明显,波已绕过障碍物的边缘而传播了,即发生了衍射现象。若缝的宽度比波长小得多时,衍射现象将更加显著。在图17-5中,10§17-4平面简谐行波的波动方程!一平面余弦行波在均匀无耗媒质中沿x轴正方向传播,波速u,坐标原点的振动方程为y=Acos(t+o)求:波动方程(即坐标为x的P点的振动方程)。
注意这里:x表示各质点的平衡位置到坐标原点的距离;y表示各质点对平衡位置的位移。yxouxP图17-6如图17-6所示,11
因为我们研究的是均匀无耗媒质中的平面波,所以P点的振幅与原点的振幅相同,故仍是A。原点o的振动方程为y=Acos(t+o)
要找出P点的振动方程,只要找出P点的振幅和位相就行了。如前所述,P点的位相比o点落后x/u,写为等式有P点的位相-o点位相=-x/u即:P点的位相-(t+o)=-x/uyxouxP图17-612
P点的位相=[(t-x/u)+o]则P点的位相比o点超前x/u,于是:P点的位相-(t+o)=+x/u,这时波动方程应为于是P点的振动方程(即波动方程)为yxouxP图17-6u若波沿x轴负方向传播,13总结起来,波动方程的标准形式应为式中:“”号表示波沿x轴正方向传播;“”号表示波沿x轴负方向传播。o是坐标原点的初相。
考虑到,=2/T,=uT,波动方程还可写为(17-2b)(17-2c)(17-2a)14
1.当x=xo(确定值)时,位移y只是时间t的余弦函数:这是xo处质点的振动方程。
2.当t=to(确定值)时,位移y只是时间x的余弦函数:
此式表示给定时刻to各振动质点的位移分布情况,相应的y-x的曲线就叫做波形曲线,如图17-7所示。讨论:15x+utu)+o]
上式表明,t时刻x点的振动状态,经时间t后传播到了x+ut处。即经时间t波沿x轴正方向传播了距离ut,如图17-8所示。3.当x,t都变化时,代表一列沿x轴正方向传播的波。yxou图17-716图17-8t时刻yxouutt+t时刻17
求:(1)此波的传播方向,波的振幅、周期、频率、波长和波速,以及坐标原点的振动初相;(2)x=2m处质点的振动方程,及t=1s时该质点的速度和加速度。(3)x1=1m和x2=2m两点的相差。
解(1)比较法。
波沿x轴正方向传播;A=0.5m,T=2s,=1/2Hz,=4m,u=/T=2m/s,原点的振动初相o=/2。
例题17-1已知波动方程:
18
(2)将x=2m代入波动方程就得该处质点的振动方程:t=1s时该质点的速度和加速度为t=1-0.5(m/s)t=10(3)x1=1m和x2=2m两点的相差:19
例题17-2一波动以u=20cm/s沿x轴负方向传播,A点的振动方程为yA=0.4cos4t(cm),求波动方程:(1)以A为坐标原点;(2)以B为坐标原点。
解(1)以A为坐标原点。=0.4cos4(t)cmx5cmABu图17-9x5cmABu图17-9ayo1.标准函数法:20已知A点的振动方程为yA=0.4cos4t(cm)P(x)点比已知点A时间超前:图17-9bx5cmABuyoPxu=20cm/s波动方程:y=0.4cos4(t=0.4cos4(t)cmP(x)点比已知点A
超前用“+”;落后用“”。2.t(
tt
)法(超前、落后法)+t)21(2)以B为坐标原点。y=0.4cos[4(t)+o]cm如何找出坐标原点的初相o?x5cmABu图17-9cyo1.标准函数法:yA=0.4cos4tu=20抓住已知点A(的位相):由此得o=波动方程为y=0.4cos[4(t)+]cm4t22已知A点的振动方程为yA=0.4cos4t(cm)P(x)点比已知点A时间超前:x5cmABu图17-9dyopxu=20cm/sy=0.4cos4(t)波动方程:2.t(
tt
)法(超前、落后法)即波动方程为y=0.4cos[4(t)+]cm=0.4cos4(t+t23
例题17-3一波动以速度u沿x轴正方向传播,p点的振动方程为yp=Acos(t+),求:(1)坐标原点o的振动方程;(2)波动方程。xypluo图17-10解(1)原点o比p点超前l/u,即o点位相-(t+)=l/u
o点位相=t++l/u坐标原点o的振动方程为:y=Acos(t++l/u)(2)波动方程:
o=(+l/u)24图17-10axypluoxMM(x)点比已知点p时间落后:已知p点的振动方程为yp=Acos(t+)波动方程:令x=0得坐标原点o的振动方程为:用t(
tt
)法先求波动方程:另解:25
例题17-4一平面简谐波沿x轴正方向传播,振幅A=10cm,角频率=7rad/s,当t=1s时,x=10cm处的a点的振动状态为ya=0,a<0,而x=20cm处的b点的振动状态为yb=5cm,b>0。设波长>10cm,求该波的波动方程。当t=1时,对a点有:对b点有:解得:u=84cm/s,
o=-17/3=/3波动方程为解把已知填入波动方程:
26
例题17-5波速为u=0.08m/s的一平面简谐波在t=0时的波形如图17-11所示,图中p点此时正向y轴正方向运动,求该波的波动方程。
解由p点此时正向y轴正方向运动,可判定此波沿x轴正方向传播。
=2=0.4。波动方程可写为
由图可知,=0.4,又已知u=0.08,所以频率=u/=0.2,u图17-11y(m)x(m)op0.20.1227
例题17-6沿x轴负方向传播的一平面简谐波在t=2s时的波形如图17-12所示,设波速u=0.5m/s,求:(1)图中p点的振动方程;(2)该波的波动方程。
解(1)由图可知,A=0.5,=2,u=0.5,所以T=4,=/2。故
p点的振动方程为(2)该波的波动方程:图17-12py(m)x(m)o1-0.5u28§17-5平面波的动力学方程(17-13)由此得这就是平面波的动力学方程,它是一个微分方程。29§17-6波的能量和能流一.波的能量密度
波动过程也是能量的传播过程。我们以横截面积为S的均匀细长棒中的平面余弦纵波为例来研究波的能量。
在媒质中取一质元dm=dV(为媒质的密度),该质元长dx、伸长量dy。当波传播到这个质元时,其振动动能和势能分别为dxdydm=dVu图17-1330(17-15)由胡克定律,杨氏弹性模量:Y=u2(17-16)31质元dm的总能:(17-18)(3)能量密度(单位体积中波的能量)为(17-19)
(1)任意时刻,质元的动能和势能都相等。即
(2)质元的总能量随时间作周期性的变化。这和振动中的情况也是不同的。这说明,在波动中,随着振动在媒质中的传播,能量也从媒质的一部分传到另一部分,所以,波动是能量传播的一种方式。这是和振动中的情况完全不同的。32平均能量密度:(17-20)二.波的能流密度(波强)
单位时间内,通过垂直于波动传播方向的单位面积的能量,称为能流密度。显然,能流密度也就是通过垂直于波动传播方向的单位面积的功率。(17-24)
设在媒质内垂直于波传播方向取一面积S,则在dt时间内通过S面的能量等于该面后方体积为udt.S中的能量,于是平均能流密度(或波强)为Sudt图17-1433三.声波声强级引起人听觉的机械波的频率范围:20-20000Hz人耳的听觉并不与声强成正比,而是与声强的对数成正比。取声强Io=10-12(w/m2)为标准,则声强级:(dB)树叶沙沙:20dB;正常谈话:60dB;闹市:70dB;飞机起飞:150dB。34
例题17-7一平面简谐波在弹性煤质中传播,在某一瞬时,煤质中某质元正处于平衡位置,此时它的能量是(A)质元的动能为零,势能最大。(B)质元的动能为零,势能为零。(C)质元的动能最大,势能最大。(D)质元的动能最大,势能为零。答:(C)35
例题17-8一电台(视为点波源)平均发射功率10kw,求离电台1km处的波强。
解能流密度(波强)为
显然,直接用上面的公式无法求得结果。但电台(点波源)发出的能量是通过一个个半径为r的球面的,由定义:能流密度也就是通过垂直于波传播方向的单位面积的功率。于是所求能流密度(波强)为=7.96×10-4(w/m2)36一.波的叠加原理§17-8波的干涉驻波
大量的观察和研究表明:几列波可以保持各自的特点(频率、波长、振幅、振动方向等)同时通过同一媒质,好像在各自的传播过程中没有遇到其他波一样。因此,在几列波相遇或叠加的区域内,任一点的振动,为各个波单独在该点产生的振动的合成。这一规律称为波的独立传播原理或波的叠加原理。管弦乐队合奏或几个人同时讲话时,在空气中同时传播着许多声波,但我们仍能够辩别出各种乐器的音调或某个人的声音,这就是波的叠加原理的具体例子。应当指出,上述波的叠加原理并不是普遍成立的,只有当波的强度较小时(波动方程为线性的时),它才是正确的。37二.波的干涉
两列波
(1)频率相同;(2)振动方向相同;(3)相差恒定;
相干条件
则在空间相遇区域就会叠加出有些地方的振动始终加强,而另一些的振动始终减弱的稳定分布,这种现象称为波的干涉。
下面我们来研究加强和减弱的条件是什么。38s2s1r1r2p图17-16
设两个相干波源S1、S2的振动方程分别为
y10=A1cos(t+1)
y20=A2cos(t+2)
S1
p:S2
p:P点的合振动为
y=y1+y2=Acos(t+)(同方向同频率谐振动的合成)
从这两波源发出的波在P点相遇,它们单独在P点引起的振动分别为39合振幅:(17-31)式中合振动的初相为P点的合振动为y=y1+y2=Acos(t+)波强:(17-32)40很显然,干涉的强弱取决于两列波的相位差:=±2k,A=A1+A2,加强(相干相长),特别是A1=A2时,A=2A1,Imax=4I1。=±(2k+1),A=|A1-A2|
,减弱(相干相消),特别是A1=A2时,A=0,Imin=0。(k=0,1,2……)(17-33),(17-34)41
例题17-9
两个振幅都为A的相干波源S1和S2相距3/4,S1比S2超前/2,设两波在连线上的波强不随传播距离而改变,试分析S1和S2连线上的干涉情况。axxb解干涉的强弱取决于相位差:S1左側a点:=S2右側b点:=S1左側各点都加强,Imax=4I1S1S2图17-173/4S2右側各点都减弱,Imin=042S1和S2之间c点:S1S2图17-173/42k,解得x=/2处加强。(2k+1),解得x=3/4处减弱。xc=43
例题17-10如图所示,原点o是波源,振动方向垂直纸面,波长为。AB为波的反射平面,反射时无半波损失。A点位于o点的正下方,Ao=h,ox轴平行于AB。求ox轴上干涉加强点的坐标。图17-18oxABh解=2k,加强(k=1,2,3……)解得(最大k:令x=0,得k=2h/)(k=1,2,3……2h/)xpq44
例题17-11已知:yb=3cos2t,yc=4cos(2t+/2)(SI),从b、c两点发出的波在p点相遇,bp=0.45m,cp=0.3m,u=0.2m/s,求p点的合振动方程。图17-19cbp解
y1=3cos(2t-)=3cos(2t-/2)cp:y2=4cos(2t+/2-)=4cos(2t-/2)p点的合振动方程:y=y1+y2=7cos(2t-/2)mbp:45
例题17-12
相干波源S1超前S2,
A1=A2=0.2m,频率=100Hz,r1=4m,r2=3.75m,两种媒质中的波速分别为u1=400m/s,u2=500m/s,求两媒质界面上p点的合振幅。=0=A1+A2=0.4m解先求两波到达p点的位相差:s2s1r2r1p图17-20u2u146三.驻波
两列振幅相等、传播方向相反的相干波进行叠加,就会形成驻波。波腹波节图17-21驻波的形成.47将两列波合成,可得这就是驻波方程。
(1)驻波方程实际上是一个振动方程,只不过各点的振幅随坐标x的不同而变化。有些地方振幅始终最大,另一些地方振幅始终为零。整体上看,驻波的波形驻定在原地起伏变化而不传播,这是驻波中“驻”字的意思。48
(2)波腹和波节位置波腹:即波腹的位置为波节:即波节的位置为
容易算出,相邻的两个波节(或波幅)之间的距离是/2。可见,测出两波节之间的距离,就能算出波长。这是实验中测量波长的一种常用的方法。49
(3)驻波中的位相
由驻波方程可知,2x/=k+/2为波节,而2x/在1、4象限的点,各点位相都是t;2x/在2、3象限的点,各点位相都是(t+)。
可见,在相邻的两波节间,各点的振动位相相同;而在波节两旁,各点的振动位相相反。因此,驻波实际上就是分段振动着的,没有振动状态或相位的传播。这是驻波中“驻”字的又一层意思。波节波节123450图17-21驻波的形成.51
(4)驻波中的能量
当各质元的位移都同时达到各自的最大值时,其动能为零,全部能量是势能,但波节处质元相对形变大,弹性势能大,因此能量主要集中在波节附近。当各质元同时通过平衡位置时,各质元均无形变,势能为零,全部能量都是动能。由于波腹处质元速度最大,动能最大,因而能量主要集中在波腹附近。从整个过程来看,能量在相邻的波腹、波节间来回转移,它限制在以相邻的波腹和波节为边界的长为λ/4的小区段中,波节两侧的媒质、波腹两侧的媒质互不交换能量。因此,驻波是不传播能量的。这是驻波中“驻”字的再一层意思。52
(5)关于半波损失.B
值得注意的是,在反射点B处绳是固定不动的,因而此处只能是波节。从振动合成考虑,这意味着反射波与入射波的相位在此处正好相反,或者说,入射波在反射时有的相位突变。由于相距半个波长的两点相差为,所以,这种入射波在反射时发生的相位突变的现象常称为半波损失。一般情况下,当波从波疏媒质垂直入射到波密媒质界面上反射时,反射时就有半波损失。53
例题17-13一弦上的驻波方程为求:(1)形成驻波的两波的振幅和波速;(2)相邻两波节之间的距离;(3)t=3.00×10-3s时,位于x=0.625m处质点的振动速度。
解:(1)比较法A=1.50×10-2m,=1.25m,=275Hz,u==343.8m/s54(2)相邻两波节之间的距离:(=1.25m)=0.625m(3)t=3.00×10-3s时,位于x=0.625m处质点的振动速度。x=0.625,=-46.2(m/s)55
例题17-14一列横波在绳上传播,其表达式为(1)现有另一列横波y2与上述已知横波在绳上形成驻波,这一列横波y2在x=0处与已知横波位相相同,写出该波y2的方程。(2)写出绳上的驻波方程;(3)波幅和波节位置。解(1)设波y2的方程为因y2在x=0处与已知横波位相相同,所以o=0,56(2)写出绳上的驻波方程:(3)波幅和波节位置。波幅:波节:57解(1)设反射波方程为Loyx图17-22py1y2
由于反射端为自由端(无半波损失),入射波和反射波在p点相差为零,即反射波方程为
例题17-15波沿棒传播,在x=L处(p点)反射,反射端为自由端,求:(1)反射波方程;(2)驻波方程。58(2)驻波方程。驻波方程为Loyx图17-22py1y259
例题17-16振幅为A、频率为、波长为的一简谐波沿弦线传播,在固定端P点反射,假设反射后波不衰减。已知:OP=7/8,DP=3/8,在t=0时,x=0处煤质质元的合振动经平衡位置向负方向运动,求D点处入射波和反射波的合振动方程。y1y2x图17-23oyDP
解:设入射波方程为设反射波方程为驻波方程:60反射点P(x=7/8)处为固定点,这表示P点处为波节:y1y2x图17-23oyDP=0已知:t=0时,x=0处煤质质元的合振动经平衡位置向负方向运动。61y1y2x图17-23oyDP
x=0处煤质质元的合振动方程:已知:t=0,x=0处煤质质元的合振动经平衡位置向负方向运动:驻波方程:62y1y2x图17-23oyDPD点处入射波和反射波的合振动方程:(已知:OP=7/8,DP=3/8)63
例题17-17设波源位于坐标原点o处,其振动方程为yo=Acost。在x=-3/4处的Q点有一波密反射壁(为波长),如图17-24所示。求:(1)o点发出的沿x轴传播的波的波动方程;(2)Q点反射的反射波的波动方程;(3)oQ区域内合成波的方程;(4)x>0区域内合成波的方程;(5)x=-/2处质点p的振动方程。解(1)沿x轴正方向传播的波:沿x轴负方向传播的波:Qy2y1y图17-24oxp64(2)设Q点反射的反射波的波动方程为yr
由于反射壁处有半波损失,入射波y2和反射波yr在Q点相差应为,即解得o=-4。最后得Q点反射波的波动方程为
Qy2y1y图17-24oxp65oQ区域内合成波的方程为这是驻波方程。(4)x>0区域内合成波的方程:(3)这是行波方程。yrQy2y1y图17-24oxp66
(5)将x=-/2代入oQ区域的驻波方程:就得x=-/2处质点p的振动方程:yrQy2y1y图17-24oxp67§17-9多普勒效应
目前,多普勒效应已在科学研究、工程技术、交通管理、医疗诊断等各方面有着十分广泛的应用。例如分子、原子和离子由于热运动产生的多普勒效应使其发射和吸收的谱线增宽。在天体物理和受控热核聚变实验装置中谱线的多普勒增宽已成为一种分析恒星大气、等离子体物理状态的重要测量和诊断手段。基于反射波多普勒效应的原理,已广泛地应用于车辆、导弹等运动目标速度的监测。电磁波的多普勒效应为跟踪人造卫星提供了一种简便的方法。在医学上所谓“D超”,是利用超声波的多普勒效应来检查人体内脏、血管的运动和血液的流速、流量等情况。在工矿企业中则利用多普勒效应来测量管道中有悬浮物液体的流速。68
在前面的讨论中,波源和接收器(观察者)相对于媒质都是静止的,接收器接收到的波的频率与波源的频率相同。如果波源或接收器或两者同时相对于媒质运动时,接收器接收到的频率和波源的频率不同。这一现象称为多普勒(Doppler)效应。例如,当高速行驶的火车鸣笛而来时,我们听到的汽笛声调变高,当它鸣笛离去时,我们听到的音调变低,就是多普勒效应的最好例子。为简单起见,下面的讨论假定波源和接收器在同一直线上运动。规定用s—表示波源相对于媒质的运动速度;r—表示接收器相对于媒质的运动速度;u—表示波在媒质中的传播速度。什么是多普勒效应呢?691.波源和接收器相对于媒质都静止
当波源和接收器相对于媒质都静止时,波源每作一次全振动,波就在空间传播一个波长的距离,结果就有一个完整的波通过接收器,显然接收器(或观察者)接收到的频率vr就等于波源的频率v,即
vr=u/=v
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年母婴用品研发合作合同协议
- 2026年食堂智能化管理合同
- 2026年奶茶店摊位承包合同协议
- 2026年商用空调系统维护合同
- 2026年成都市户外露营体验服务合同协议
- 家长会夏季安全知识培训课件
- 2026年物联网应用开发合同
- 2026年水利设备租赁管理合同协议
- 2026年2026年餐厅食材冷链配送合同
- 2026年商铺租赁补充合同协议
- 2026年七年级历史上册期末考试试卷及答案(共六套)
- 资产评估期末试题及答案
- 2025年内科医师定期考核模拟试题及答案
- 郑州大学《大学英语》2023-2024学年第一学期期末试卷
- 校企合作工作室规范管理手册
- 2025年农业农村部科技发展中心招聘备考题库及1套参考答案详解
- 2025年南阳科技职业学院单招职业适应性考试模拟测试卷附答案
- 毛泽东思想和中国特色社会主义理论体系概论+2025秋+试题1
- 2025年10月自考13532法律职业伦理试题及答案
- 高中数学拔尖创新人才培养课程体系建构与实施
- 2025年广东省普通高中学业水平合格性考试英语试题(原卷版)
评论
0/150
提交评论