2023届哈尔滨市第六中学数学高一下期末质量检测模拟试题含解析_第1页
2023届哈尔滨市第六中学数学高一下期末质量检测模拟试题含解析_第2页
2023届哈尔滨市第六中学数学高一下期末质量检测模拟试题含解析_第3页
2023届哈尔滨市第六中学数学高一下期末质量检测模拟试题含解析_第4页
2023届哈尔滨市第六中学数学高一下期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如果执行右面的框图,输入,则输出的数等于()A. B. C. D.2.若两个正实数,满足,且不等式有解,则实数的取值范围是()A. B. C. D.3.已知随机事件和互斥,且,.则()A. B. C. D.4.已知随机变量服从正态分布,且,,则()A.0.2 B.0.3 C.0.7 D.0.85.已知是第二象限角,且,则的值为A. B. C. D.6.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|)的部分图象如图所示,则f(x)的解析式为()A.f(x)=sin(x)﹣1 B.f(x)=2sin(x)﹣1C.f(x)=2sin(x)﹣1 D.f(x)=2sin(2x)+17.用斜二测画法画一个边长为2的正三角形的直观图,则直观图的面积是:A. B. C. D.8.英国数学家布鲁克泰勒(TaylorBrook,1685~1731)建立了如下正、余弦公式(

)其中,,例如:.试用上述公式估计的近似值为(精确到0.01)A.0.99 B.0.98 C.0.97

D.0.969.的内角、、所对的边分别为、、,下列命题:(1)三边、、既成等差数列,又成等比数列,则是等边三角形;(2)若,则是等腰三角形;(3)若,则;(4)若,则;(5),,若唯一确定,则.其中,正确命题是()A.(1)(3)(4) B.(1)(2)(3) C.(1)(2)(5) D.(3)(4)(5)10.已知函数,(,,)的部分图像如图所示,则、、的一个数值可以是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列{an}、{bn}都是公差为1的等差数列,且a1+b1=512.如图,在内有一系列的正方形,它们的边长依次为,若,,则所有正方形的面积的和为___________.13.某奶茶店的日销售收入y(单位:百元)与当天平均气温x(单位:)之间的关系如下:x012y5221通过上面的五组数据得到了x与y之间的线性回归方程:;但现在丢失了一个数据,该数据应为____________.14.已知函数,有以下结论:①若,则;②在区间上是增函数;③的图象与图象关于轴对称;④设函数,当时,.其中正确的结论为__________.15.已知,若方程的解集为,则__________.16.一圆柱的侧面展开图是长、宽分别为3、4的矩形,则此圆柱的侧面积是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设全集为,集合,集合.(Ⅰ)求;(Ⅱ)若,求实数的取值范围.18.近年来,石家庄经济快速发展,跻身新三线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,石家庄的交通优势在同级别的城市内无能出其右.为了调查石家庄市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中.(1)求,的值;(2)求被调查的市民的满意程度的平均数,中位数(保留小数点后两位),众数;(3)若按照分层抽样从,中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在的概率.19.已知函数f(x)=sin22x-π4(1)求当t=1时,求fπ(2)求gt(3)当-12≤t≤1时,要使关于t的方程g(t)=20.若不等式恒成立,求实数a的取值范围。21.己知数列的前项和,求数列的通项.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】试题分析:当时,该程序框图所表示的算法功能为:,故选D.考点:程序框图.2、D【解析】

利用基本不等式求得的最小值,根据不等式存在性问题,解一元二次不等式求得的取值范围.【详解】由于,而不等式有解,所以,即,解得或.故选:D【点睛】本小题主要考查利用基本不等式求最小值,考查不等式存在性问题的求解,考查一元二次不等式的解法,属于中档题.3、D【解析】

根据互斥事件的概率公式可求得,利用对立事件概率公式求得结果.【详解】与互斥本题正确选项:【点睛】本题考查概率中的互斥事件、对立事件概率公式的应用,属于基础题.4、B【解析】随机变量服从正态分布,所以曲线关于对称,且,由,可知,所以,故选B.5、B【解析】试题分析:因为是第二象限角,且,所以.考点:两角和的正切公式.6、D【解析】

由已知列式求得的值,再由周期求得的值,利用五点作图的第二个点求得的值,即可得到答案.【详解】由题意,根据三角函数的图象,可得,解得,又由,解得,则,又由五点作图的第二个点可得:,解得,所以函数的解析式为,故选D.【点睛】本题主要考查了由的部分图象求解函数的解析式,其中解答中熟记三角函数的五点作图法,以及三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于中档试题.7、C【解析】分析:先根据直观图画法得底不变,为2,再研究高,最后根据三角形面积公式求结果.详解:因为根据直观图画法得底不变,为2,高为,所以直观图的面积是选C.点睛:本题考查直观图画法,考查基本求解能力.8、B【解析】

利用题设中给出的公式进行化简,即可估算,得到答案.【详解】由题设中的余弦公式得,故答案为B【点睛】本题主要考查了新信息试题的应用,其中解答中理解题意,利用题设中的公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.9、A【解析】

由等差数列和等比数列中项性质可判断(1);由正弦定理和二倍角公式、诱导公式,可判断(2);由三角形的边角关系和余弦函数的单调性可判断(3);由余弦定理和基本不等式可判断(4);由正弦定理和三角形的边角关系可判断(5).【详解】解:若、、既成等差数列,又成等比数列,则,,则,得,得,得,则是等边三角形,故(1)正确;若,则,则,则或,即或,则△ABC是等腰或直角三角形,故(2)错误;若,则,则,故(3)正确;若,则,则,由得,则,则,故(4)正确;若,,则,即,又,若唯一确定,则或,则或,故(5)错误;故选:A.【点睛】本题主要考查正弦定理和余弦定理的运用,以及三角形的形状的判断,考查化简运算能力,属于中档题.10、A【解析】

从图像易判断,再由图像判断出函数周期,根据,将代入即可求得【详解】根据正弦函数图像的性质可得,由,,又因为图像过,代入函数表达式可得,即,,解得故选:A【点睛】本题考查三角函数图像与性质的应用,函数图像的识别,属于中档题二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

根据等差数列的通项公式把abn转化到a1+(bn-1)【详解】S=[=[=na1=4n+n(n-1)故答案为:12【点睛】本题主要考查等差数列通项公式和前n项和的应用,利用分组求和法是解决本题的关键.12、【解析】

根据题意可知,可得,依次计算,,不难发现:边长依次为,,,,构成是公比为的等比数列,正方形的面积:依次,,不难发现:边长依次为,,,,正方形的面积构成是公比为的等比数列.利用无穷等比数列的和公式可得所有正方形的面积的和.【详解】根据题意可知,可得,依次计算,,是公比为的等比数列,正方形的面积:依次,,边长依次为,,,,正方形的面积构成是公比为的等比数列.所有正方形的面积的和.故答案为:【点睛】本题考查了无穷等比数列的和公式的运用.利用边长关系建立等式,找到公比是解题的关键.属于中档题.13、4【解析】

根据回归直线经过数据的中心点可求.【详解】设丢失的数据为,则,,把代入回归方程可得,故答案为:4.【点睛】本题主要考查回归直线的特征,明确回归直线一定经过样本数据的中心点是求解本题的关键,侧重考查数学运算的核心素养.14、②③④【解析】

首先化简函数解析式,逐一分析选项,得到答案.【详解】①当时,函数的周期为,,或,所以①不正确;②时,,所以是增函数,②正确;③函数还可以化简为,所以与关于轴对称,正确;④,当时,,,④正确故选②③④【点睛】本题考查了三角函数的化简和三角函数的性质,属于中档题型.15、【解析】

将利用辅助角公式化简,可得出的值.【详解】,其中,,因此,,故答案为.【点睛】本题考查利用辅助角公式化简计算,化简时要熟悉辅助角变形的基本步骤,考查运算求解能力,属于中等题.16、12【解析】

直接根据圆柱的侧面展开图的面积和圆柱侧面积的关系计算得解.【详解】因为圆柱的侧面展开图的面积和圆柱侧面积相等,所以此圆柱的侧面积为.故答案为:12【点睛】本题主要考查圆柱的侧面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】

(1)化简集合,按并集的定义,即可求解;(2)得,结合数轴,确定集合端点位置,即可求解.【详解】解:(Ⅰ)集合,集合,∴;(Ⅱ)由,且,∴,由题意知,∴,解得,∴实数的取值范围是.【点睛】本题考查集合间的运算,考查集合的关系求参数,属于基础题.18、(1),;(2)平均数约为,中位数约为,众数约为75;(3).【解析】

(1)根据题目频率分布直方图频率之和为1,已知其中,可得答案;(2)利用矩形的面积等于频率为0.5可估算中位数所在的区间,利用估算中位数定义,矩形最高组估算纵数可得答案;(3)利用古典概型的概率计算公式求解即可.【详解】解:研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如图的频率分布直方图,其中,(1),其中,解得:,;(2)随机抽取了1000名市民进行调查,则估计被调查的市民的满意程度的平均数:,由题中位数在70到80区间组,,,中位数:,众数:75,故平均数约为,中位数约为,众数约为75;(3)若按照分层抽样从,,,中随机抽取8人,则,共80人抽2人,,共240人抽6人,再从这8人中随机抽取2人,则共有种不同的结果,其中至少有1人的分数在,共种不同的结果,所以至少有1人的分数在,的概率为:.【点睛】本题主要考查频率分布直方图的应用,属于中档题.19、(1)-4(2)g(t)=t2【解析】

(1)直接代入计算得解;(2)先求出sin(2x-π4)∈[-12,1]【详解】(1)当t=1时,f(x)=sin22x-(2)因为x∈[π24,πf(x)=[sin(2x-当t<-12时,则当sin当-12≤t≤1时,则当当t>1时,则当sin(2x-π故g(t)=(3)当-12≤t≤1时,g(t)=-6t+1,令欲使g(t)=kt2-9有一个实根,则只需h(-解得k≤-2或所以k的范围:(-【点睛】本题主要考查三角函数的范围的计算,考查二次函数的最值的求法和方程的零点问题,意在考查学生对这些知识的理解掌握水平和分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论