湖北省荆州市凤凰中学高二数学文月考试题含解析_第1页
湖北省荆州市凤凰中学高二数学文月考试题含解析_第2页
湖北省荆州市凤凰中学高二数学文月考试题含解析_第3页
湖北省荆州市凤凰中学高二数学文月考试题含解析_第4页
湖北省荆州市凤凰中学高二数学文月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省荆州市凤凰中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.

如右图,是半圆的直径,点在半圆上,于点,

且,设,则

参考答案:A2.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x1234用水量y4.5432.5由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是=-0.7x+a,则a等于()A.10.5B.5.15C.5.2 D.5.25参考答案:D3.一个球受热膨胀,表面积增加21%,那么球的半径增加了(

).

A. B. C. D.参考答案:D设因膨胀半径由变为,则,∴,∴半径增加.故选.4.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为()A.2cm3 B.4cm3 C.6cm3 D.8cm3参考答案:A【考点】由三视图求面积、体积.【分析】几何体为四棱锥,结合直观图判断棱锥的高与底面四边形的形状,判断相关几何量的数据,把数据代入棱锥的体积公式计算.【解答】解:由三视图知:几何体为四棱锥,如图:其中SA⊥平面ABCD,SA=2,四边形ABCD为直角梯形,AD=1,BC=2,AB=2,∴四棱锥的体积V=××2×2=2(cm3).故选:A.5.二项式的展开式中含项的系数是

(用数字作答)A.-160

B.160

XC.-150

D.150

参考答案:A6.已知直线

,与的夹角为(

A.45°

B.60°

C.90°

D.120°参考答案:B略7.已知某几何体的三视图如右图所示,则该几何体的体积是(

)A.

B.C.

D.

参考答案:C略8.在△ABC中,∠A=60°,AB=2,且△ABC的面积为,则BC的长为()A. B.3 C. D.7参考答案:A【考点】余弦定理.【分析】由△ABC的面积S△ABC=,求出AC=1,由余弦定理可得BC,计算可得答案.【解答】解:∵S△ABC==×AB×ACsin60°=×2×AC×,∴AC=1,△ABC中,由余弦定理可得BC==,故选A.【点评】本题考查三角形的面积公式,余弦定理的应用,求出AC,是解题的关键.9.若过原点的直线与圆+++3=0相切,若切点在第三象限,则该直线的方程是(

)A.

B.

C.

D.参考答案:C10.如果a>b,那么下列不等式中正确的是()A.ac>bc B.﹣a>﹣b C.c﹣a<c﹣b D.参考答案:C【考点】不等式的基本性质.【分析】根据不等式的基本性质分别判断即可.【解答】解:对于A,c≤0时,不成立,对于B,﹣a<﹣b,对于C,根据不等式的性质,成立,对于D,a,b是负数时,不成立,故选:C.二、填空题:本大题共7小题,每小题4分,共28分11.设幂函数的图象过点,则=

参考答案:12.已知一圆柱内接于球O,且圆柱的底面直径与母线长均为2,则球O的表面积为_________参考答案:略13.一个几何体的三视图及其尺寸(单位:)如图所示,则该几何体的表面积为__________.参考答案:根据三视图可知该几何体是一个正四棱锥,底面边长为,侧高为,则该几何体的侧表面,底面积.故该几何体的表面积.14.已知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,则公差d=

.参考答案:2【考点】等差数列的前n项和.【专题】等差数列与等比数列.【分析】由等差数列的性质和求和公式可得a2=4,进而可得d=a3﹣a2,代入求解即可.【解答】解:由题意可得S3===12,解得a2=4,故公差d=a3﹣a2=6﹣4=2故答案为:2【点评】本题考查等差数列的前n项和公式和公差的求解,属基础题.15.关于函数.有下列三个结论:①的值域为;②是上的增函数;③的图像是中心对称图形,其中所有正确命题的序号是_______;参考答案:①②③略16.已知函数则__________.参考答案:-2【分析】先计算出,再求得解.【详解】由题得,所以=f(-2)=.故答案为:-2.【点睛】本题主要考查对数和指数运算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.

17.已知一个动圆与圆C:相内切,且过点A(4,0),则这个动圆圆心的轨迹方程是_______________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.)如图,阴影部分区域是由函数图象,直线围成,求这阴影部分区域面积。参考答案:----------(5分)-----------------(9分)------------------------------(10分)解法二:所求面积是以长为,宽为了2的矩形的面积的一半,所以所求的面积为.

略19.已知,其中e是无理数,a∈R.(1)若a=1时,f(x)的单调区间、极值;(2)求证:在(1)的条件下,;(3)是否存在实数a,使f(x)的最小值是﹣1,若存在,求出a的值;若不存在,说明理由.参考答案:考点:利用导数求闭区间上函数的最值.专题:综合题;压轴题;存在型.分析:(1)由题意先对函数y进行求导,解出极值点,然后再根据函数的定义域,把极值点代入已知函数,比较函数值的大小,从而解出单调区间;(2)构造函数h(x)=g(x)+,对其求导,求出h(x)的最小值大于0,就可以了.(3)存在性问题,先假设存在,看是否能解出a值.解答:解:(1)∵当a=1时,,∴,(1分)∴当0<x<1时,f'(x)<0,此时f(x)单调递减当1<x<e时,f'(x)>0,此时f(x)单调递增,(3分)∴f(x)的单调递减区间为(0,1);单调递增区间为(1,e);f(x)的极小值为f(1)=1.(4分)(2)由(1)知f(x)在(0,e]上的最小值为1,(5分)令h(x)=g(x)+,x∈(0,e]∴,(6分)当0<x<e时,h′(x)>0,h(x)在(0,e]上单调递增,(7分)∴,∴在(1)的条件下,f(x)>g(x)+,(8分)(3)假设存在实数a,使,(x∈(0,e])有最小值﹣1,∴,(9分)①当a≤0时,∵0<x≤e,∴f'(x)>0,∴f(x)在(0,e]上单调递增,此时f(x)无最小值.(10分)②当0<a<e时,若0<x<a,则f'(x)<0,故f(x)在(0,a)上单调递减,若a<x<e,则f'(x)>0,故f(x)在(a,e]上单调递增.,,得,满足条件.(12分)3当a≥e4时,∵0<x<e,∴f'(x)<0,∴f(x)在(0,e]上单调递减,(舍去),所以,此时无解.(13分)综上,存在实数,使得当x∈(0,e]时f(x)的最小值是﹣1.(14分)(3)法二:假设存在实数a,使,x∈(0,e])的最小值是﹣1,故原问题等价于:不等式,对x∈(0,e]恒成立,求“等号”取得时实数a的值.即不等式a≥﹣x(1+lnx),对x∈(0,e]恒成立,求“等号”取得时实数a的值.设g(x)=﹣x(1+lnx),即a=g(x)max,x∈(0,e](10分)又(11分)令当,g'(x)>0,则g(x)在单调递增;当,g'(x)<0,则g(x)在单调递减,(13分)故当时,g(x)取得最大值,其值是故.综上,存在实数,使得当x∈(0,e]时f(x)的最小值是﹣1.(14分)点评:此题是一道综合题,主要还是考查导数的定义及利用导数来求区间函数的最值,利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力,解题的关键是求导要精确.20.如图,在四边形ABCD中,AB=AD=4,BC=6,CD=2,

(1)

求四边形ABCD的面积;

(2)

求三角形ABC的外接圆半径R;

(3)

若,求PA+PC的取值范围。参考答案:(1)由得

(2)由(1)知,

(3)

由(1)和(2)知点P在三角形ABC的外接圆上,故PA=2Rsin∠ACP,PC=2Rsin∠CAP,设∠ACP=θ,则∠CAP=,,

21.设命题:,命题:;如果“或”为真,“且”为假,求的取值范围。参考答案:解:P真:a<-1……………....2分Q真:a≥1或a≤-2…………………...4分依题意得P,Q一真一假………….…5分当P真Q假时-2<a<-1……………...8分同理,当Q真P假时a≥1………………11分综上所述的取值范围为-2<a<-1或a≥1……………12分略22.等差数列{an}中,a1=3,其前n项和为Sn.等比数列{bn}的各项均为正数,b1=1,且b2+S2=12,a3=b3.(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)求数列{}的前n项和Tn.参考答案:【考点】数列的求和;等差数列的性质.【专题】等差数列与等比数列.【分析】(Ⅰ)设{an}公差为d,数列{bn}的公比为q,由已知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论