版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市第四十六中学2025年数学高二第一学期期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在三棱锥中,,,,若,,则()A. B.C. D.2.已知函数(其中)的部分图像如图所示,则函数的解析式为()A. B.C. D.3.已知向量,且,则()A. B.C. D.4.如图,正三棱柱中,,则与平面所成角的正弦值等于()A. B.C. D.5.《米老鼠和唐老鸭》这部动画给我们的童年带来了许多美好的回忆,令我们印象深刻.如图所示,有人用3个圆构成米奇的简笔画形象.已知3个圆方程分别为:圆圆,圆若过原点的直线与圆、均相切,则截圆所得的弦长为()A. B.C. D.6.在数列中,若,则称为“等方差数列”,下列对“等方差数列”的判断,其中不正确的为()A.若是等方差数列,则是等差数列 B.若是等方差数列,则是等方差数列C.是等方差数列 D.若是等方差数列,则是等方差数列7.在平面直角坐标系xOy中,双曲线(,)的左、右焦点分别为,,点M是双曲线右支上一点,,且,则双曲线的离心率为()A. B.C. D.8.已知,则a,b,c的大小关系为()A. B.C. D.9.△ABC的两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是()A. B.(y≠0)C. D.10.设.若,则=()A. B.C. D.e11.点A是曲线上任意一点,则点A到直线的最小距离为()A. B.C. D.12.已知实数,满足约束条件则的最大值为()A.10 B.8C.4 D.20二、填空题:本题共4小题,每小题5分,共20分。13.已知平面和两条不同的直线,则下列判断中正确的序号是___________.①若,则;②若,则;③若,则;④若,则;14.双曲线的离心率为____15.已知点,点是直线上的动点,则的最小值是_____________16.已知蜥蜴的体温与阳光照射的关系可近似为,其中为蜥蜴的体温(单位:℃)为太阳落山后的时间(单位:).当________时,蜥蜴体温的瞬时变化率为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,正四棱锥底面的四个顶点在球的同一个大圆上,点在球面上,且正四棱锥的体积为.(1)该正四棱锥的表面积的大小;(2)二面角的大小.(结果用反三角表示)18.(12分)已知点和直线.(1)求以为圆心,且与直线相切的圆的方程;(2)过直线上一点作圆的切线,其中为切点,求四边形PAMB的面积的最小值.19.(12分)在中,角A,B,C的对边分别是a,b,c,且.(1)求角B的大小;(2)若,,且,求a.20.(12分)已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴的正半轴上,是否存在某个确定的点M,过该点的动直线与抛物线C交于A,B两点,使得为定值.如果存在,求出点M的坐标;如果不存在,请说明理由.21.(12分)如图所示,圆锥的高,底面圆的半径为,延长直径到点,使得,分别过点、作底面圆的切线,两切线相交于点,点是切线与圆的切点(1)证明:平面;(2)若平面与平面所成锐二面角的余弦值为,求该圆锥的体积22.(10分)在中,内角所对的边长分别为,是1和的等差中项(1)求角;(2)若的平分线交于点,且,求的面积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据空间向量的基本定理及向量的运算法则计算即可得出结果.【详解】连接,因为,所以,因为,所以,所以,故选:B2、B【解析】根据题图有且,结合五点法求参数,即可得的解析式.【详解】由图知:且,则,所以,则,即,又,可得,,则,,又,即有.综上,.故选:B3、A【解析】利用空间向量共线的坐标表示即可求解.【详解】由题意可得,解得,所以.故选:A4、C【解析】取中点,连接,,证明平面,从而可得为与平面所成角,再利用三角函数计算的正弦值.【详解】取中点,连接,,在正三棱柱中,底面是正三角形,∴,又∵底面,∴,又,∴平面,∴为与平面所成角,由题意,,,在中,.故选:C5、A【解析】设直线,利用直线与圆相切,求得斜率,再利用弦长公式求弦长【详解】设过点的直线.由直线与圆、圆均相切,得解得(1).设点到直线的距离为则(2).又圆的半径直线截圆所得弦长结合(1)(2)两式,解得6、B【解析】根据等方差数列的定义逐一进行判断即可【详解】选项A中,符合等差数列的定义,所以是等差数列,A正确;选项B中,不是常数,所以不是等方差数列,选项B错误;选项C中,,所以是等方差数列,C正确;选项D中,所以是等方差数列,D正确故选:B7、A【解析】本题考查双曲线的定义、几何性质及直角三角形的判定即可解决.【详解】因为,,所以在中,边上的中线等于的一半,所以.因为,所以可设,,则,解得,所以,由双曲线的定义得,所以双曲线的离心率故选:A8、A【解析】根据给定条件构造函数,再探讨其单调性并借助单调性判断作答.【详解】令函数,求导得,当时,,于是得在上单调递减,而,则,即,所以,故选:A9、D【解析】根据三角形的周长得出,再由椭圆的定义得顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,可求得顶点C的轨迹方程.【详解】因为,所以,所以顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,所以顶点C的轨迹方程是,故选:D.【点睛】本题考查椭圆的定义,由定义求得动点的轨迹方程,求解时,注意去掉不满足的点,属于基础题.10、D【解析】由题可得,将代入解方程即可.【详解】∵,∴,∴,解得.故选:D.11、A【解析】动点在曲线,则找出曲线上某点的斜率与直线的斜率相等的点为距离最小的点,利用导数的几何意义即可【详解】不妨设,定义域为:对求导可得:令解得:(其中舍去)当时,,则此时该点到直线的距离为最小根据点到直线的距离公式可得:解得:故选:A12、A【解析】根据约束条件作出可行域,再将目标函数表示的一簇直线画出向可行域平移即可求解.【详解】作出可行域,如图所示转化为,令则,作出直线并平移使它经过可行域点,经过时,,解得,所以此时取得最大值,即有最大值,即故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、②④【解析】根据直线与直线,直线与平面的位置关系依次判断每个选项得到答案.详解】若,则或,异面,或,相交,①错误;若,则,②正确;若,则或或与相交,③错误;若,则,④正确;故答案为:②④.14、【解析】由题意得:考点:双曲线离心率15、【解析】直接根据点到直线的距离公式即可求出【详解】线段最短时,与直线垂直,所以,的最小值即为点到直线的距离,则.故答案为:.16、5【解析】求得导函数,令,计算即可得出结果.【详解】,,令,得:.解得:.时刻min时,蜥蜴的体温的瞬时变化率为故答案为:5.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)首先求出球的半径,即可得到四棱锥的棱长,再根据锥体的表面积公式计算可得;(2)取中点,联结,即可得到,从而得到为二面角的平面角,再利用余弦定理计算可得.【小问1详解】解:设球的半径为,则解得,所以所有棱长均为,因此【小问2详解】解:取中点,联结,因为均为正三角形,因此,即为二面角的平面角.,因此二面角的大小为.18、(1)(2)【解析】(1)利用到直线的距离求得半径,由此求得圆的方程.(2)结合到直线的距离来求得四边形面积的最小值.【小问1详解】圆的半径,圆的方程为.【小问2详解】由四边形的面积知,当时,面积最小.此时...19、(1);(2).【解析】(1)根据已知条件,运用余弦定理化简可求出;(2)由可求出,利用诱导公式和两角和的正弦公式求出,再利用正弦定理即求.【小问1详解】)∵且,∴,∴,∴,∵,∴.【小问2详解】∵,∴,∴,∵,∴,∵,∴,又∵,,,∴.20、(1);(2).【解析】(1)直线与抛物线相切,所以有,可解得,得抛物线方程.(2)联立直线与抛物线有,把目标式坐标化可得与无关,可得.试题解析:(1)联立方程有,,有,由于直线与抛物线相切,得,所以.(2)假设存在满足条件的点,直线,有,,设,有,,,,当时,为定值,所以.21、(1)证明见解析;(2).【解析】(1)由线面垂直、切线的性质可得、,再根据线面垂直的判定即可证结论.(2)若,构建为原点,、、为x、y、z轴的空间直角坐标系,求面、面的法向量,利用空间向量夹角的坐标表示及其对应的余弦值求R,最后由圆锥的体积公式求体积.【小问1详解】由题设,底面圆,又是切线与圆的切点,∴底面圆,则,且,而,∴平面.【小问2详解】由题设,若,可构建为原点,、、为x、y、z轴的空间直角坐标系,又,可得,∴,,,有,,若是面的一个法向量,则,令,则,又面的一个法向量为,∴,可得,∴该圆锥的体积22、(1);(2)【解析】(1)根据是1和的等差中项得到,再利用正弦定理结合商数关系,两角和与差的三角函数化简得到求解;(2)由和求得b,c的关系,再结合余弦定理求解即可.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乡卫生院公共卫生制度
- 男搓背师卫生制度
- 卫生十大制度
- 职业卫生四项制度
- 知联会财务制度
- 食堂卫生管理奖罚制度
- 食堂食品卫生处理制度
- 卫生监督所行政收费制度
- 翔天财务制度
- 小街小学财务制度
- 广西南宁市2025-2026学年高一上学期期末物理试题(原卷版+解析版)
- 2026届湖北省襄阳第四中学数学高一上期末考试模拟试题含解析
- 吉林省长春市2026届高三年级质量检测政治(一)(长春一模)(含答案)
- 2026年度驾驶员工作计划
- 2026年常州工业职业技术学院单招职业技能测试题库含答案详解
- OEE的课件教学课件
- 混凝土施工作业环境管理方案
- 2025年四川省成都市武侯区中考物理二诊试卷
- CTT2000LM用户手册(维护分册)
- 川2020J146-TJ 建筑用轻质隔墙条板构造图集
- 新员工入职申请表模板
评论
0/150
提交评论