版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省霞浦县第一中学2026届高二上数学期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的两个焦点分别为,且平行于轴的直线与椭圆交于两点,那么的值为()A. B.C. D.2.已知两个向量,,且,则的值为()A.1 B.2C.4 D.83.过双曲线的右焦点有一条弦是左焦点,那么的周长为()A.28 B.C. D.4.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高二被抽取的人数为人,那么高三被抽取的人数为()A. B.C. D.5.已知直线与抛物线C:相交于A,B两点,O为坐标原点,,的斜率分别为,,则()A. B.C. D.6.已知函数的图象如图所示,则不等式的解集为()A. B.C. D.7.“”是“直线:与直线:平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知命题:,;命题:在中,若,则,则下列命题为真命题的是()A. B.C. D.9.已知为圆:上任意一点,则的最小值为()A. B.C. D.10.直线的倾斜角的大小为()A. B.C. D.11.已知函数(是的导函数),则()A.21 B.20C.16 D.1112.已知函数,那么的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在空间直角坐标系Oxyz中,点在x,y,z轴上的射影分别为A,B,C,则四面体PABC的体积为______________.14.直线l过抛物线的焦点F,与抛物线交于A,B两点,若,则直线l的斜率为______15.阿基米德(公元前287—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.已知椭圆经过点,则当取得最大值时,椭圆的面积为_________16.已知锐角的内角,,的对边分别为,,,且.若,则外接圆面积的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在正方体中,,分别为棱,的中点(1)求证:直线平面;(2)求异面直线与所成角的余弦值18.(12分)已知数列的前n项积,数列为等差数列,且,(1)求与的通项公式;(2)若,求数列的前n项和19.(12分)已知项数为的数列是各项均为非负实数的递增数列.若对任意的,(),与至少有一个是数列中的项,则称数列具有性质.(1)判断数列,,,是否具有性质,并说明理由;(2)设数列具有性质,求证:;(3)若数列具有性质,且不是等差数列,求项数的所有可能取值.20.(12分)已知直线,,分别求实数的值,使得:(1);(2);(3)与相交.21.(12分)已知函数(1)当时,求曲线在点(0,f(0))处的切线方程;(2)若存在,使得不等式成立,求m的取值范围22.(10分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点的直线与椭圆相交于、两点.(1)求椭圆的方程;(2)若以为直径的圆过坐标原点,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据椭圆的方程求出,再由椭圆的对称性及定义求解即可.【详解】由椭圆的对称性可知,,所以,又椭圆方程为,所以,解得,所以,故选:A2、C【解析】由,可知,使,利用向量的数乘运算及向量相等即可得解.【详解】∵,∴,使,得,解得:,所以故选:C【点睛】思路点睛:在解决有关平行的问题时,通常需要引入参数,如本题中已知,引入参数,使,转化为方程组求解;本题也可以利用坐标成比例求解,即由,得,求出m,n.3、C【解析】根据双曲线方程得,,由双曲线的定义,证出,结合即可算出△的周长【详解】双曲线方程为,,根据双曲线的定义,得,,,,相加可得,,,因此△的周长,故选:C4、C【解析】利用分层抽样求出的值,进而可求得高三被抽取的人数.【详解】由分层抽样可得,可得,设高三所抽取的人数为,则,解得.故选:C.5、C【解析】设,,由消得:,又,由韦达定理代入计算即可得答案.【详解】设,,由消得:,所以,故.故选:C【点睛】本题主要考查了直线与抛物线的位置关系,直线的斜率公式,考查了转化与化归的思想,考查了学生的运算求解能力.6、D【解析】原不等式等价于,根据的图象判断函数的单调性,可得和的解集,再分情况或解不等式即可求解.【详解】由函数的图象可知:在和上单调递增,在上单调递减,所以当时,;当时,;由可得,所以或,即或,解得:或,所以原不等式的解集为:,故选:D.7、C【解析】根据两直线平行求得的值,由此确定充分、必要条件.【详解】由于,所以,当时,两直线重合,不符合题意,所以.所以“”是“直线:与直线:平行”的充要条件.故选:C8、C【解析】分别求得的真假性,从而确定正确答案.【详解】对于,由于,所以为假命题,为真命题.对于,在三角形中,,由正弦定理得,所以为真命题,为假命题.所以为真命题,、、为假命题.故选:C9、C【解析】设,则的几何意义为圆上的点和定点连线的斜率,利用直线和圆相切,即可求出的最小值;【详解】圆,它圆心是,半径为1,设,则,即,当直线和圆相切时,有,可得,,的最小值为:,故选:10、B【解析】由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选11、B【解析】根据已知求出,即得解.【详解】解:由题得,所以.故选:B12、D【解析】直接求导,代入计算即可.【详解】,故.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】将物体放入长方体中,切割处理求得体积.【详解】如图所示:四面体PABC可以看成以1,2,3为棱长的长方体切去四个全等的三棱锥,所以四面体PABC的体积为.故答案为:214、【解析】如图,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,利用在直角三角形中,求得,从而得出直线的斜率【详解】解:如图,当在第一象限时,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,由抛物线的定义可知:设,则,,,在直角三角形中,,所以,则直线的斜率;当在第四象限时,同理可得,直线的斜率,综上可得直线l的斜率为;故答案为:15、【解析】利用基本不等式得出取得最大值时的条件结合可知,再利用点在椭圆方程上,故可求得、的值,进而求出椭圆的面积.详解】由基本不等式可得,当且仅当时取得最大值,由可知,∵椭圆经过点,∴,解得,,则椭圆的面积为.故答案为:.16、【解析】利用二倍角公式求出,即可得到,再利用余弦定理及基本不等式求出的取值范围,再利用正弦定理求出外接圆的半径,即可求出外接圆的面积;【详解】解:因为,所以,解得或(舍去).又为锐角三角形,所以.因为,当且仅当时等号成立,所以.外接圆的半径,故外接圆面积的最小值为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)证明,则,可证明,由平面,可得,再由线面垂直的判定定理即可求证;(2)连结,可知,所以或其补角即为异面直线与所成的角,在中由余弦定理计算的值即可求解.【小问1详解】在正方形中,,分别为棱,的中点,则,,,所以,则,所以,即,又因为平面,面,所以,因为,所以平面【小问2详解】连结,,可知,所以或其补角即为异面直线与所成的角,令,则,,,在中,由余弦定理可得:,故异面直线与所成角的余弦值为.18、(1),.(2).【解析】(1)由已知得,,两式相除得,由已知得,求得数列的公差为,由等差数列的通项公式可求得;(2)运用错位相减法可求得.【小问1详解】解:因为数列的前n项积,所以,所以,两式相除得,因为数列为等差数列,且,,所以,即,所以数列的公差为,所以,所以,【小问2详解】解:由(1)得,所以,,所以,所以.19、(1)数列,,,不具有性质;(2)证明见解析;(3)可能取值只有.【解析】(1)由数列具有性质的定义,只需判断存在与都不是数列中的项即可.(2)由性质知:、,结合非负递增性有,再由时,必有,进而可得,,,,,应用累加法即可证结论.(3)讨论、、,结合性质、等差数列的性质判断是否存在符合题设性质,进而确定的可能取值.【小问1详解】数列,,,不具有性质.因为,,和均不是数列,,,中的项,所以数列,,,不具有性质.【小问2详解】记数列的各项组成的集合为,又,由数列具有性质,,所以,即,所以.设,因为,所以.又,则,,,,.将上面的式子相加得:.所以.【小问3详解】(i)当时,由(2)知,,,这与数列不是等差数列矛盾,不合题意.(ii)当时,存在数列,,,,符合题意,故可取.(iii)当时,由(2)知,.①当时,,所以,.又,,∴,,,,即.由,,得:,,∴.②由①②两式相减得:,这与数列不是等差数列矛盾,不合题意.综上,满足题设的的可能取值只有.【点睛】关键点点睛:第二问,由可知,并应用累加法求证结论;第三问,讨论k的取值,结合的性质,由性质、等差数列的性质判断不同k的取值情况下数列的存在性即可.20、(1)或(2)或(3)且【解析】(1)根据直线一般式平行的条件列式计算;(2)根据直线一般式垂直的条件列式计算;(3)根据相交和平行的关系可得答案.【小问1详解】,,解得或又时,直线,,两直线不重合;时,直线,,两直线不重合;故或;【小问2详解】,,解得或;【小问3详解】与相交故由(1)得且.21、(1)(2)【解析】(1)利用导数求出切线斜率,即可求出切线方程;(2)把题意转化为:存在,使得不等式成立,构造新函数,对m进行分类讨论,利用导数求,解不等式,即可求出m的范围.【小问1详解】当时,,定义域为R,.所以,.所以曲线在点(0,f(0))处的切线方程为:,即.【小问2详解】不等式可化为:,即存在,使得不等式成立.构造函数,则.①当时,恒成立,故在上单调递增,故,解得:,故;②当时,令,解得:令,解得:故在上单调递减,在上单调递增,又,故,解得:,这与相矛盾,舍去;③当时,恒成立,故在上单调递减,故,不符合题意,应舍去.综上所述:m的取值范围为:.22、(1);(2)【解析】(1)由离心率得到,由椭圆的短轴端点与双曲线的焦点重合,得到,进而可求出结果;(2)先由题意,得直线的斜率存在,设直线的方程为,联立直线与椭圆方程,设,根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论