湖南省雅礼中学2026届高二上数学期末调研试题含解析_第1页
湖南省雅礼中学2026届高二上数学期末调研试题含解析_第2页
湖南省雅礼中学2026届高二上数学期末调研试题含解析_第3页
湖南省雅礼中学2026届高二上数学期末调研试题含解析_第4页
湖南省雅礼中学2026届高二上数学期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省雅礼中学2026届高二上数学期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线被圆截得的弦长为()A.1 B.C.2 D.32.已知数列的通项公式为,是数列的最小项,则实数的取值范围是()A. B.C. D.3.若向量,,,则()A. B.C. D.4.设的内角A,B,C的对边分别为a,b,c,已知,,,则b等于()A. B.2C. D.45.的内角A,B,C的对边分别为a,b,c,若,则一定是()A.等边三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形6.已知数列为等差数列,则下列数列一定为等比数列的是()A. B.C. D.7.已知双曲线的虚轴长是实轴长的2倍,则实数的值是A. B.C. D.8.某公司要建造一个长方体状的无盖箱子,其容积为48m3,高为3m,如果箱底每1m2的造价为15元,箱壁每1m2造价为12元,则箱子的最低总造价为()A.72元 B.300元C.512元 D.816元9.已知集合,则()A. B.C. D.10.如图,在三棱锥中,,,,点在平面内,且,设异面直线与所成角为,则的最大值为()A. B.C. D.11.我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形,则的表达式为()A. B.C. D.12.设正数数列的前项和为,数列的前项积为,且,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆,为其右焦点,过垂直于轴的直线与椭圆相交所得的弦长为,则椭圆的方程为________.14.已知函数,,对一切,恒成立,则实数的取值范围为________.15.椭圆的两焦点为,,P为C上的一点(P与,不共线),则的周长为______.16.已知数列满足,且.则数列的通项公式为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在正方体中,为的中点,点在棱上(1)若,证明:与平面不垂直;(2)若平面,求平面与平面的夹角的余弦值18.(12分)记为等差数列的前n项和,已知.(1)求的通项公式;(2)求的最小值.19.(12分)已知项数为的数列是各项均为非负实数的递增数列.若对任意的,(),与至少有一个是数列中的项,则称数列具有性质.(1)判断数列,,,是否具有性质,并说明理由;(2)设数列具有性质,求证:;(3)若数列具有性质,且不是等差数列,求项数的所有可能取值.20.(12分)已知函数,.(1)当时,求函数在区间上的最大值;(2)当时,求函数的极值.21.(12分)已知集合,,.(1)求;(2)若“”是“”的必要不充分条件,求实数a的取值范围.22.(10分)若存在实常数k和b,使得函数和对其公共定义域上的任意实数x都满足:和恒成立,则称此直线y=kx+b为和的“隔离直线”.已知函数,.(1)证明函数在内单调递增;(2)证明和之间存在“隔离直线”,且b的最小值为-4.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用直线和圆相交所得的弦长公式直接计算即可.【详解】由题意可得圆的圆心为,半径,则圆心到直线的距离,所以由直线和圆相交所得的弦长公式可得弦长为:.故选:C.2、D【解析】利用最值的含义转化为不等式恒成立问题解决即可【详解】解:由题意可得,整理得,当时,不等式化简为恒成立,所以,当时,不等式化简为恒成立,所以,综上,,所以实数的取值范围是,故选:D3、A【解析】根据向量垂直得到方程,求出的值.【详解】由题意得:,解得:.故选:A4、A【解析】由正弦定理求解即可.【详解】因为,所以故选:A5、B【解析】利用余弦定理化角为边,从而可得出答案.【详解】解:因为,所以,则,所以,所以是等腰三角形.故选:B.6、A【解析】根据等比数列的定义判断【详解】设的公差是,即,显然,且是常数,是等比数列,若中一个为1,则,则不是等比数列,只要,,都不可能是等比数列,如,,故选:A7、C【解析】由方程表示双曲线知,又双曲线的虚轴长是实轴长的2倍,所以,即,所以故选C.考点:双曲线的标准方程与简单几何性质.8、D【解析】设这个箱子的箱底的长为xm,则宽为m,设箱子总造价为f(x)元,则f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低总造价【详解】设这个箱子的箱底的长为xm,则宽为m,设箱子总造价为f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,当且仅当x,即x=4时,f(x)取最小值816元故选:D9、C【解析】解一元二次不等式求集合A,再由集合的交运算求即可.【详解】由题设,,∴.故选:C.10、D【解析】设线段的中点为,连接,过点在平面内作,垂足为点,证明出平面,然后以点为坐标原点,、、分别为、、轴的正方向建立空间直角坐标系,设,其中,且,求出的最大值,利用空间向量法可求得的最大值.【详解】设线段的中点为,连接,,为的中点,则,,则,,同理可得,,,平面,过点在平面内作,垂足为点,因为,所以,为等边三角形,故为的中点,平面,平面,则,,,平面,以点为坐标原点,、、分别为、、轴的正方向建立如下图所示的空间直角坐标系,因为是边长为的等边三角形,为的中点,则,则、、、,由于点在平面内,可设,其中,且,从而,因为,则,所以,,故当时,有最大值,即,故,即有最大值,所以,.故选:D.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.11、D【解析】先分别观察给出正方体的个数为:1,,,,总结一般性的规律,将一般性的数列转化为特殊的数列再求解【详解】解:根据前面四个发现规律:,,,,,累加得:,,故选:【点睛】本题主要考查了归纳推理,属于中档题12、B【解析】当可求得;当时,可证得数列为等差数列,利用等差数列通项公式可推导得到,由求得后,利用可求得结果.【详解】当时,,解得:;当时,由得:,即,,数列是以为首项,为公差的等差数列,,解得:,,经检验:满足,,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】将代入椭圆的方程,可得出,可得出关于的等式,求出的值,进而可求得的值,由此可得出椭圆的方程.【详解】将代入椭圆的方程可得,可得,由已知可得,整理可得,,解得,所以,,因此,椭圆的方程为.故答案为:.14、【解析】通过分离参数,得到关于x的不等式;再构造函数,通过导数求得函数的最值,进而求得a的取值范围【详解】因为,代入解析式可得分离参数a可得令()则,令解得所以当0<x<1,,所以h(x)在(0,1)上单调递减当1<x,,所以h(x)在(1,+∞)上单调递增,所以h(x)在x=1时取得极小值,也即最小值所以h(x)≥h(1)=4因为对一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4所以a的取值范围为【点睛】本题综合考查了函数与导数的应用,分离参数法,利用导数求函数的最值,属于中档题15、【解析】结合椭圆的定义求得正确答案.【详解】椭圆方程为,所以,所以三角形的周长为.故答案为:16、【解析】倒数型求数列通项公式,第一步求倒数,第二步构造数列,求通项.【详解】因为,所以,所以数列是首项为1,公差为1的等差数列,所以故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)设正方体的棱长为,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,计算出,即可证得结论成立;(2)利用空间向量法可求得平面与平面的夹角的余弦值.【小问1详解】证明:以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,设正方体的棱长为,则、、、,由得点的坐标为,,,因为,所以与不垂直,所以与平面不垂直【小问2详解】解:设,则,,因为平面,所以,所以,得,且,即,所以,,设平面的法向量为,由,取,可得,因为平面,所以平面的一个法向量为,所以,所以平面与平面所成夹角的余弦值为18、(1)(2)【解析】(1)设数列的公差为d,由,利用等差数列的前n项和公式求解;(2)利用等差数列的前n项和公式结合二次函数的性质求解.【小问1详解】解:设数列的公差为d,∵,∴,解得2,∴.【小问2详解】由(1)知2,∴,,,∴当时,取得最小值-16.19、(1)数列,,,不具有性质;(2)证明见解析;(3)可能取值只有.【解析】(1)由数列具有性质的定义,只需判断存在与都不是数列中的项即可.(2)由性质知:、,结合非负递增性有,再由时,必有,进而可得,,,,,应用累加法即可证结论.(3)讨论、、,结合性质、等差数列的性质判断是否存在符合题设性质,进而确定的可能取值.【小问1详解】数列,,,不具有性质.因为,,和均不是数列,,,中的项,所以数列,,,不具有性质.【小问2详解】记数列的各项组成的集合为,又,由数列具有性质,,所以,即,所以.设,因为,所以.又,则,,,,.将上面的式子相加得:.所以.【小问3详解】(i)当时,由(2)知,,,这与数列不是等差数列矛盾,不合题意.(ii)当时,存在数列,,,,符合题意,故可取.(iii)当时,由(2)知,.①当时,,所以,.又,,∴,,,,即.由,,得:,,∴.②由①②两式相减得:,这与数列不是等差数列矛盾,不合题意.综上,满足题设的的可能取值只有.【点睛】关键点点睛:第二问,由可知,并应用累加法求证结论;第三问,讨论k的取值,结合的性质,由性质、等差数列的性质判断不同k的取值情况下数列的存在性即可.20、(1)2(2)当时,没有极值;当时,极大值为,极小值为.【解析】(1)当时,,可得:.,,得或,列出函数单调性表格,即可最大值;(2),令,得或,分别讨论和,即可求得的极值.【详解】(1)当时,,所以.令,得或,列表如下:-2-11+0-0+极大值极小值由于,,所以函数在区间上的最大值为2.(2),令,得或.当时,,所以函数在上单调递增,无极值.当时,列表如下:+0-0+极大值极小值函数的极大值为,极小值为.【点睛】本题主要考查根据导数求函数单调性和极值,解题关键是掌握导数求单调性的方法和极值定义,考查分析能力和计算能力,属于中档题.21、(1).(2).【解析】分析:(1)先求出A,B集合的解集,A集合求定义,B集合解不等式即可,然后由交集定义即可得结论;(2)若“”是“”的必要不充分条件,说明且,然后根据集合关系求解.详解:(1),.则(2),因为“”是“”的必要不充分条件,所以且.由,得,解得.经检验,当时,成立,故实数的取值范围是.点睛:考查定义域,解不等式,交集的定义以及必要不充分条件,正确求解集合,缕清集合间的基本关系是解题关键,属于基础题.22、(1)见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论