版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省厦门二中2026届数学高二上期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线与直线垂直,则()A. B.C. D.32.阅读程序框图,该算法的功能是输出A.数列的第4项 B.数列的第5项C.数列的前4项的和 D.数列的前5项的和3.已知动圆M与直线y=2相切,且与定圆C:外切,求动圆圆心M的轨迹方程A. B.C. D.4.甲、乙、丙、丁共4名同学进行党史知识比赛,决出第1名到第4名的名次(名次无重复),其中前2名将获得参加市级比赛的资格,甲和乙去询问成绩,回答者对甲说:“很遗憾,你没有获得参加市级比赛的资格.”对乙说:“你当然不会是最差的.”从这两个回答分析,4人的排名有()种不同情况.A.6 B.8C.10 D.125.设直线的倾斜角为,且,则满足A. B.C. D.6.设双曲线的左、右顶点分别为、,左、右焦点分别为、,以为直径的圆与双曲线左支的一个交点为若以为直径的圆与直线相切,则的面积为()A. B.C. D.7.如图已知正方体,点是对角线上的一点且,,则()A.当时,平面 B.当时,平面C.当为直角三角形时, D.当的面积最小时,8.椭圆上一点到一个焦点的距离为,则到另一个焦点的距离是()A. B.C. D.9.已知点,和直线,若在坐标平面内存在一点P,使,且点P到直线l的距离为2,则点P的坐标为()A.或 B.或C.或 D.或10.在平面直角坐标系中,椭圆的左、右焦点分别为,,过且垂直于轴的直线与交于,两点,与轴交于点,,则的离心率为()A. B.C. D.11.若圆与圆相切,则实数a的值为()A.或0 B.0C. D.或12.设双曲线的实轴长与焦距分别为2,4,则双曲线C的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线上一点到其焦点的距离为,则的值为______14.已知存在正数使不等式成立,则的取值范围_____15.设,复数,,若是纯虚数,则的虛部为_________.16.已知是首项为,公差为1的等差数列,数列满足,若对任意的,都有成立,则实数的取值范围是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图1,已知矩形ABCD,,,E,F分别为AB,CD的中点,将ABCD卷成一个圆柱,使得BC与AD重合(如图2),MNGH为圆柱的轴截面,且平面平面MNGH,NG与曲线DE交于点P(1)证明:平面平面MNGH;(2)判断平面PAE与平面PDH夹角与的大小,并说明理由18.(12分)某莲藕种植塘每年的固定成本是2万元,每年最大规模的种植量是8万千克,每种植1万千克莲藕,成本增加0.5万元.种植万千克莲藕的销售额(单位:万元)是(是常数),若种植2万千克莲藕,利润是1.5万元,求:(1)种植万千克莲藕利润(单位:万元)为的解析式;(2)要使利润最大,每年需种植多少万千克莲藕,并求出利润的最大值.19.(12分)若数列的前n项和满足,(1)求的通项公式;(2)设,求数列的前n项和20.(12分)如图,在四棱锥中,底面ABCD为直角梯形,,,平面底面ABCD,Q为AD的中点,M是棱PC的中点,,,(1)求证:;(2)求直线PB与平面MQB所成角的正弦值21.(12分)已知二次曲线的方程:(1)分别求出方程表示椭圆和双曲线的条件;(2)若双曲线与直线有公共点且实轴最长,求双曲线方程;(3)为正整数,且,是否存在两条曲线,其交点P与点满足,若存在,求的值;若不存在,说明理由22.(10分)已知抛物线的焦点为,直线与抛物线的准线交于点,为坐标原点,(1)求抛物线的方程;(2)直线与抛物线交于,两点,求的面积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先分别求出两条直线的斜率,再利用两直线垂直斜率之积为,即可求出.【详解】由已知得直线与直线的斜率分别为、,∵直线与直线垂直,∴,解得,故选:.2、B【解析】分析:模拟程序的运行,依次写出每次循环,直到满足条件,退出循环,输出A的值即可详解:模拟程序的运行,可得:
A=0,i=1执行循环体,,
不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,满足条件,退出循环,输出A的值为31.观察规律可得该算法的功能是输出数列{}的第5项.所以B选项是正确的.点睛:模拟程序的运行,依次写出每次循环得到的A,i的值,当i=6时满足条件,退出循环,输出A的值,观察规律即可得解.3、D【解析】由题意动圆M与直线y=2相切,且与定圆C:外切∴动点M到C(0,-3)的距离与到直线y=3的距离相等由抛物线的定义知,点M的轨迹是以C(0,-3)为焦点,直线y=3为准线的抛物线故所求M的轨迹方程为考点:轨迹方程4、C【解析】由题可知甲不在前2名,乙不在最后一名,然后分类讨论可得答案.【详解】若甲是最后一名,则其他三人没有限制,4人排名即为,若甲是第三名,4人的排名为,所以4人的排名有种情况.故选:C5、D【解析】因为,所以,,,,故选D6、C【解析】据三角形中位线可得;再由双曲线的定义求出,进而求出的面积【详解】双曲线的方程为:,,设以为直径的圆与直线相切与点,则,且,,∥.又为的中点,,又,,的面积为:.故选:C7、D【解析】建立空间直角坐标系,利用空间向量法一一计算可得;【详解】解:由题可知,如图令正方体的棱长为1,建立空间直角坐标系,则,,,,,,,所以,因为,所以,所以,,,,设平面的法向量为,则,令,则,,所以对于A:若平面,则,则,解得,故A错误;对于B:若平面,则,即,解得,故B错误;当为直角三角形时,有,即,解得或(舍去),故C错误;设到的距离为,则,当的面积最小时,,故正确故选:8、B【解析】利用椭圆的定义可得结果.【详解】在椭圆中,,由椭圆的定义可知,到另一个焦点的距离是.故选:B.9、C【解析】设点的坐标为,根据,点到直线的距离为,联立方程组即可求解.【详解】解:设点的坐标为,线段的中点的坐标为,,∴的垂直平分线方程为,即,∵点在直线上,∴,又点到直线:的距离为,∴,即,联立可得、或、,∴所求点的坐标为或,故选:C10、B【解析】由题意结合几何性质可得为等腰三角形,且,所以,求出的长,结合椭圆的定义可得答案.【详解】如图,由题意轴,轴,则又为的中点,则为的中点,又,则为等腰三角形,且,所以将代入椭圆方程得,,即所以,则由椭圆的定义可得,即则椭圆的离心率故选:B11、D【解析】根据给定条件求出两圆圆心距,再借助两圆相切的充要条件列式计算作答.【详解】圆的圆心,半径,圆的圆心,半径,而,即点不可能在圆内,则两圆必外切,于是得,即,解得,所以实数a的值为或.故选:D12、C【解析】由已知可求出,即可得出渐近线方程.【详解】因为,所以,所以的渐近线方程为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将抛物线方程化为标准方程,利用抛物线的定义将抛物线上的点到焦点的距离转化为到准线的距离,再利用点到直线的距离公式进行求解.【详解】将抛物线化为,由抛物线定义得点到准线的距离为,即,解得故答案为:.14、(1,1)【解析】存在性问题转化为最大值,运用均值不等式,求出的最大值,转化成解对数不等式,进而解出【详解】解:∵,由于,则,∴,当且仅当时,即:时,∴有最大值,又存在正数使不等式成立,则,即,∴,即的取值范围为:.故答案为:【点睛】本题考查均值不等式的应用和对数不等式的解法,还涉及存在性问题,考查化简计算能力15、【解析】由复数除法的运算法则求出,又是纯虚数,可求出,从而根据共轭复数及虚部的定义即可求解.【详解】解:因为复数,,所以,又是纯虚数,所以,所以,所以所以的虛部为,故答案:.16、【解析】先求得,再得出,对于任意的,都有成立,说明是中的最小项【详解】由题意,∴,易知函数在和上都是减函数,且时,,即,时,,,由题意对于任意的,都有成立,则是最小项,∴,解得,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)平面PAE与平面PDH夹角大于,理由见解析【解析】(1)由面面垂直证明,然后得证平面MNGH后可得面面垂直;(2)建立如图所示的空间直角坐标系,用空间向量法求出二面角的余弦可得结论【小问1详解】如图O,为圆柱上,下底面的中心,可知,,平面平面MNGH,所以是二面角的平面角,平面平面MNGH,所以,即,,平面MNGH,所以平面MNGH,因为平面PAE,所以平面平面MNGH;【小问2详解】因为,所以得,如图,以为坐标原点,以,,所在直线为x,y,z轴建立空间直角坐标系,则可知,,,,,则,,,,设平面AEP的法向量为,则,令,得,设平面DHP的法向量为,则,即令,得,,设平面PAE与平面PDH夹角为,则,,因为,即,所以平面PAE与平面PDH夹角大于18、(1),;(2)6万千克,万元.【解析】(1)根据题意找等量关系即可求g(x)解析式,根据函数值可求a;(2)根据g(x)导数研究其单调性并求其最大值即可.【小问1详解】种植万千克莲藕的利润(单位:万元)为:,,即,,当时,,解得,故,;【小问2详解】,当时,,当时,,∴函数在上单调递增,在上单调递减,∴时,利润最大为万元.19、(1)(2)【解析】(1)根据递推关系结合等比数列的定义可求解;(2)根据(1)化简,利用裂项相消法求出数列的前n项和.小问1详解】当时,,所以,即,当时,,得,则所以数列是首项为﹣1,公比为3的等比数列所以【小问2详解】由(1)得:所以,所以20、(1)证明见解析(2)【解析】(1)根据等腰三角形可得,再由面面垂直的性质得出线面垂直,即可求证;(2)建立空间直角坐标系,利用向量法求线面角.【小问1详解】因为Q为AD的中点,,所以,又因为平面底面ABCD,平面底面,平面PAD,所以平面ABCD,又平面ABCD,所以【小问2详解】由题可知QA、QB、QP两两互相垂直,以QA为x轴、QB为y轴、QP为z轴建立空间坐标系,如图,根据题意,则,,,,,由M是棱PC的中点可知,,设平面MQB的法向量为,,,则,即令,则,,故平面MQB的一个法向量为,所以,所以直线PB与平面MQB所成角的正弦值为21、(1)时,方程表示椭圆,时,方程表示双曲线;(2);(3)存在,且或或.【解析】(1)当且仅当分母都为正,且不相等时,方程表示椭圆;当且仅当分母异号时,方程表示双曲线(2)将直线与曲线联立化简得:,利用双曲线与直线有公共点,可确定的范围,从而可求双曲线的实轴,进而可得双曲线方程;(3)由(1)知,,是椭圆,,,,是双曲线,结合图象的几何性质,任意两椭圆之间无公共点,任意两双曲线之间无公共点,从而可求【详解】(1)当且仅当时,方程表示椭圆;当且仅当时,方程表示双曲线(2)化简得:△或所以双曲线的实轴为,当时,双曲线实轴最长为此时双曲线方程为(3)由(1)知,,是椭圆,,,,是双曲线,结合图象的几何性质任意两椭圆之间无公共点,任意两双曲线之间无公共点设,,,2,,,6,7,由椭圆与双曲线定义及;所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 聊城市初二考试试题及答案
- 光伏支架实操培训课件
- 高二会考历史试卷及答案
- 福建中考真题及答案
- 企业安全环保意识培训课件
- 8AU1-U4一轮复习-2023年江苏中考英语一轮复习(牛津译林版)
- 小学五年级语文上册语文园地五说明文数据准确性课件
- 【初中 物理】牛顿第一定律课件 -2025-2026学年人教版物理八年级下学期
- 2026年福州工业园区开发集团有限公司建设分公司项目建设合同制人员招聘备考题库附答案详解
- 2026年自贡通航机场发展有限公司公开招聘部分工作人员的备考题库有完整答案详解
- 人体工效评估程序
- EPC工程总承包项目设计及施工的配合制度
- DB21∕T 3358-2020 电梯再生制动系统要求及试验方法
- 西南大学PPT 04 实用版答辩模板
- 国家开放大学电大《政治学原理》形考任务1及4网考题库答案
- 管理百年智慧树知到答案章节测试2023年
- 国家开放大学《刑法学(1)》形成性考核作业1-4参考答案
- 工艺美术专业课程配套练习二
- 2022“博学杯”全国幼儿识字与阅读大赛选拔试卷
- 临床试验监查计划
- 安全吹哨人管理制度
评论
0/150
提交评论