版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省内江市2026届高一数学第一学期期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的始边与轴非负半轴重合,终边过点,则()A.1 B.-1C. D.2.函数的部分图象如图所示,则,的值分别是()A.2, B.2,C.4, D.4,3.三个数20.3,0.32,log0.32的大小顺序是A.0.32<log0.32<20.3 B.0.32<20.3<log0.32C.log0.32<20.3<0.32 D.log0.32<0.32<20.34.已知命题:“,方程有解”是真命题,则实数a的取值范围是()A. B.C. D.5.体育老师记录了班上10名同学1分钟内的跳绳次数,得到如下数据:88,94,96,98,98,99,100,101,101,116.这组数据的60%分位数是()A.98 B.99C.99.5 D.1006.某四面体的三视图如图,则该四面体的体积是A.1 B.C. D.27.如果幂函数的图象经过点,则在定义域内A.为增函数 B.为减函数C.有最小值 D.有最大值8.已知角的终边上有一点的坐标是,则的值为()A. B.C. D.9.若函数满足且的最小值为,则函数的单调递增区间为A. B.C. D.10.当点在圆上变动时,它与定点的连线的中点的轨迹方程是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边经过点,且,则t的值为______12.已知是偶函数,则实数a的值为___________.13.直线l过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l的方程为____________14.定义在上的奇函数满足:对于任意有,若,则的值为__________.15.若数据的方差为3,则数据的方差为__________16.已知函数,则的值是()A. B. C. D.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=(1)求f(x)的最小正周期;(2)当x∈[-π6,18.已知正方体,分别为和上的点,且,.(1)求证:;(2)求证:三条直线交于一点.19.已知函数是定义在R上的偶函数,当时,(1)画出函数的图象;(2)根据图象写出的单调区间,并写出函数的值域.20.已知函数=的部分图象如图所示(1)求的值;(2)求的单调增区间;(3)求在区间上的最大值和最小值21.已知函数的部分图象如图所示.(1)求函数的解析式;(2)求方程在区间内的所有实数根之和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用三角函数的坐标定义求出,即得解.【详解】由题得.所以.故选:D【点睛】本题主要考查三角函数的坐标定义,意在考查学生对这些知识的理解掌握水平.2、B【解析】根据图象的两个点、的横坐标,得到四分之三个周期的值,得到周期的值,做出的值,把图象所过的一个点的坐标代入方程做出初相,写出解析式,代入数值得到结果【详解】解:由图象可得:,∴,∴,又由函数的图象经过,∴,∴,即,又由,则故选:B【点睛】本题考查由部分图象确定函数的解析式,属于基础题关键点点睛:本题解题的关键是利用代入点的坐标求出初相.3、D【解析】由已知得:,,,所以.故选D.考点:指数函数和对数函数的图像和性质.4、B【解析】由根的判别式列出不等关系,求出实数a的取值范围.【详解】“,方程有解”是真命题,故,解得:,故选:B5、C【解析】根据分位数的定义即可求得答案.【详解】这组数据的60%分位数是.6、B【解析】在正方体ABCDA1B1C1D1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D1BCB1,如图所示,该四面体的体积为.故选B点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图7、C【解析】由幂函数的图象经过点,得到,由此能求出函数的单调性和最值【详解】解:幂函数的图象经过点,,解得,,在递减,在递增,有最小值,无最大值故选【点睛】本题考查幂函数的概念和应用,是基础题.解题时要认真审题,仔细解答8、D【解析】求出,由三角函数定义求得,再由诱导公式得结论【详解】依题有,∴,∴.故选:D9、D【解析】分析:首先根据诱导公式和辅助角公式化简函数解析式,之后应用题的条件求得函数的最小正周期,求得的值,从而求得函数解析式,之后利用整体思维,借助于正弦型函数的解题思路,求得函数的单调增区间.详解:,根据题中条件满足且的最小值为,所以有,所以,从而有,令,整理得,从而求得函数的单调递增区间为,故选D.点睛:该题考查的是有关三角函数的综合问题,涉及到的知识点有诱导公式、辅助角公式、函数的周期以及正弦型函数的单调区间的求法,在结题的过程中,需要对各个知识点要熟记,解题方法要明确.10、D【解析】设中点的坐标为,则,利用在已知的圆上可得的中点的轨迹方程.【详解】设中点的坐标为,则,因为点在圆上,故,整理得到.故选:D.【点睛】求动点的轨迹方程,一般有直接法和间接法,(1)直接法,就是设出动点的坐标,已知条件可用动点的坐标表示,化简后可得动点的轨迹方程,化简过程中注意变量的范围要求.(2)间接法,有如下几种方法:①几何法:看动点是否满足一些几何性质,如圆锥曲线的定义等;②动点转移:设出动点的坐标,其余的点可以前者来表示,代入后者所在的曲线方程即可得到欲求的动点轨迹方程;③参数法:动点的横纵坐标都可以用某一个参数来表示,消去该参数即可动点的轨迹方程.二、填空题:本大题共6小题,每小题5分,共30分。11、##0.5625【解析】根据诱导公式得sinα=-,再由任意角三角函数定义列方程求解即可.【详解】因为,所以sinα=-.又角α的终边过点P(3,-4t),故sinα==-,故,且解得t=(或舍)故答案为:.12、【解析】根据偶函数定义求解【详解】由题意恒成立,即,恒成立,所以故答案为:13、x+3y-5=0或x=-1【解析】当直线l为x=﹣1时,满足条件,因此直线l方程可以为x=﹣1当直线l的斜率存在时,设直线l的方程为:y﹣2=k(x+1),化为:kx﹣y+k+2=0,则,化为:3k﹣1=±(3k+3),解得k=﹣∴直线l的方程为:y﹣2=﹣(x+1),化为:x+3y﹣5=0综上可得:直线l的方程为:x+3y﹣5=0或x=﹣1故答案为x+3y﹣5=0或x=﹣114、【解析】由可得,则可化简,利用可得,由是在上的奇函数可得,由此【详解】由题,因为,所以,由,则,则,因为,令,则,所以,因为是在上的奇函数,所以,所以,故答案:0【点睛】本题考查函数奇偶性、周期性的应用,考查由正切值求正、余弦值15、12【解析】所求方差为,填16、B【解析】分段函数求值,根据自变量所在区间代相应的对应关系即可求解【详解】函数那么可知,故选:B三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)π(2)x∈-π6,π3时,f(x)【解析】(1)对f(x)化简后得到fx=sin2x-π6【小问1详解】f(x)=所以f(x)的最小正周期为2【小问2详解】当x∈-π故当-π2⩽2x-π6当π2⩽2x-π6⩽当2x-π6∈所以-32⩽f(x)⩽118、(1)详见解析;(2)详见解析【解析】(1)连结和,由条件可证得和,从而得到∥.(2)结合题意可得直线和必相交,根据线面关系再证明该交点直线上即可得到结论【详解】证明:(1)如图,连结和,在正方体中,,∵,∴,又,,∴又在正方体中,,,∴,又,∴同理可得,又,∴∴∥.(2)由题意可得(或者和不平行),又由(1)知∥,所以直线和必相交,不妨设,则,又,所以,同理因为,所以,所以、、三条直线交于一点【点睛】(1)证明两直线平行时,可根据三种平行间的转化关系进行证明,也可利用线面垂直的性质进行证明,解题时要注意合理选择方法进行求解(2)证明三线共点的方法是:先证明其中的两条直线相交,再证明该交点在第三条直线上.解题时要依据空间中的线面关系及三个公理,并结合图形进行求解19、(1)见解析;(2)单调区间为:上是增函数,上是减函数,值域【解析】(1)由偶函数的图象关于y轴对称可知,要画出函数的图象,只须作出当时的图象,然后关于y轴对称即可;(2)观察图象,结合函数单调性和值域的定义,写出的单调区间及值域.【详解】(1)函数的图象如图所示
(2)由图象得,的单调区间为:上是增函数,上是减函数,值域为.【点睛】本题考查了偶函数的性质:图象关于y轴对称和数形结合思想,函数的图象可直观反映其性质,利用函数的图象可以解答函数的值域(最值),单调性,奇偶性等问题,也可用来解答不等式的有关题目.20、(1);(2)单调递增区间为(3)时,取得最大值1;时,f(x)取得最小值【解析】(1)利用图象的最高点和最低点的纵坐标确定振幅,由相邻对称轴间的距离确定函数的周期和值;(2)利用正弦函数的单调性和整体思想进行求解;(3)利用三角函数的单调性和最值进行求解试题解析:(1)由图象知由图象得函数最小正周期为=,则由=得(2)令..所以f(x)的单调递增区间为(3)..当即时,取得最大值1;当即时,f(x)取得最小值21、(1)(2)【解析】(1)由图像得,并求解出周期为,从而得,再代入最大值,利用整体法,从而求解得,可得解析式为;(2)作出函数与的图像,可得两个函数在有四个交点,从而得有四个实数根,再利用三角函数的对称性计算得实数根之和.【小问1详解】由图可知,,∴∴,又点在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 承包工厂饭店协议合同
- 广告保密合同协议范本
- 小项目发包合同协议书
- 工厂租赁续租合同范本
- 小学职工聘用合同范本
- 学员与驾校签合同范本
- 学校配送食材合同范本
- 年会礼品采购合同范本
- 户外广告工程合同范本
- 房东合同水电续租协议
- 2025年安吉县辅警招聘考试真题汇编附答案
- 物业管理条例实施细则全文
- 电化学储能技术发展与多元应用
- 2026年安全员之C证(专职安全员)考试题库500道及完整答案【夺冠系列】
- 课堂翻转教学效果调查问卷模板
- 铜陵市郊区2025年网格员笔试真题及答案解析
- 掩体构筑与伪装课件
- 2026年广东省春季高考模拟数学试卷试题(含答案解析)
- 微带贴片天线基础知识
- 部编版初三化学上册期末真题试题含解析及答案
- GB/T 46561-2025能源管理体系能源管理体系审核及认证机构要求
评论
0/150
提交评论