2025-2026学年七年级数学上学期第一次月考卷(全解全析)(安徽专用沪科版)_第1页
2025-2026学年七年级数学上学期第一次月考卷(全解全析)(安徽专用沪科版)_第2页
2025-2026学年七年级数学上学期第一次月考卷(全解全析)(安徽专用沪科版)_第3页
2025-2026学年七年级数学上学期第一次月考卷(全解全析)(安徽专用沪科版)_第4页
2025-2026学年七年级数学上学期第一次月考卷(全解全析)(安徽专用沪科版)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

七年级数学上学期第一次月考卷(安徽专用)

全解全析

(考试时间:120分钟试卷满分:150分)

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如雷改动,用橡

皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:沪科版2024有理数。

第一部分(选择题共40分)

一、选择题:本题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合题目

要求的。

1.(4分)某日高黎贡山气象观测显示:向阳坡气温为零上10℃,背阴坡气温为零下5。&若零上10国记作

+10℃,则零下5。(:记作()

A.+5℃B.-5℃C.+10℃D.-10℃

【答案】B

【分析】考查正负数的意义,根据在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表

示即可求解,解题的关键是理解"正''和"负”的相对性,明确什么是•对具有相反意义的量.

【详解】解:•.•零上10℃记作+10久,

二零下5久记作一5国,

故选:B.

2.(4分)一|一2025|的相反数是()

A.-2025B./C.一/D.2025

【答案】D

【分析】考查了相反数与绝对值,掌握绝对值与相反数的意义是解题的关键;选求出绝对值,再求出相反

数即可.

【详解】解:-1-20251=-2025,而一2025的相反数为2025,

故选:D.

3.(4分)下列说法中,错误的有()

①一2々是负分数;②1.5不是整数;③非负有理数不包括0;(4)3.14不是有理数;⑤0是最小的有理数;

⑥正整数、负整数统称为有理数.

A.1个B.2个C.3个D.4个

【答案】D

【分析】主要考查了有理数的分类,根据有理数的两种分类方法判断即可.

【详解】解:①一2;是负分数,故①正确:

②1.5是分数,不是整数,故②正确;

③非负有理数是大于或等于零的有理数,故③错误;

④3.14是有理数,故④错误;

⑤没有最小的有理数,故⑤错误:

⑥有理数包括整数和分数,故⑥错误;

故选:D.

4.(4分)绝对值不大于3的非正整数有()

A.1个B.3个C.6个D.4个

【答案】D

【分析】考查了绝对值:若Q>0,则|a|=a;若a=0,贝=0;若aV0,贝力。|=-a

根据绝对值的意义得到绝对值不大于3的非正整数有:一3,—2,—1,0.

【详解】解:•••|a|W3,

二.非正整数。可为:-3,—2,—1,0

故选:D.

5.(4分)下列说法正确的是()

A.一28表示8个2相乘B.25表示5个2用加

C.(一3尸与一33意义相同D.一日的底数是2

【答案】D

【分析】主要考查了有理数的乘方.根据乘方的意义,进行判断即可.

【详解】解:A、・••一28表示8个2相乘的相反数,此选项的说法错误,故不符合题意;

B、・••25表示5个2相乘,,此选项的说法错误,故不符合题意;

C、•・•(一3)3表示3个(-3)相乘,一33表示3个3相乘的相反数,.••它们表示的意义不同,故不符合题意;

D、•••一日的底数是2,.•.此选项的说法正确,故此选项符合题意,

故选:D.

6.(4分)为了简化计算,算式(一3*)x4可以化为()

A.-3x4-:X4B.-3X4+:X4C,-3x4+:D,-3-1x4

【答案】A

【分析】考查了有理数的乘法,要熟悉乘法分配律.解题关键是将一3*转换为一3—弓的形式.将带分数转

化为整数与分数的代数和形式,再利用乘法分配律展开计算.

【详解】(_3,)X4

=(-3-1)x4

=-3X4-44X4.

故选:A.

7.(4分)下列说法中错误的是()

A.近似数507万精确到万位B.近似数2.46x103精确到十位

C.30475精确到百位的近似数为3.05xIO,D1.300精确到0.1

【答案】D

【分析】考查的近似数的精确度.

解答的关键是先将其化为一般形式,看该近似数的最后一位数字所在的数位是否与所要求精确到的数位对

应.

【详解】A:近似数507万=5070000,数字7在万位上,所以该选项正确;

B:2.46x103=2460,数字6在十位上,所以该选项正确:

C:30475精确到百位,就看十位上的数字,十位上是7,根据四舍五人向前一位进1,即30475、3.05x

104,该选项正确;

D:1.300最后一位数字0在千分位上,所以1.300是精确到0.001,该选项说法错误.

故选D.

8.(4分)下列说法正确的是()

A.两个有理数的差为正数,则这两个数中至少有个是正数

B.若aVb,贝Ij|a|<\b\

C.。为任何有理数,则一|a-2|必为负数

D.若|Q|+Q=O,则。为非正数

【答案】D

【分析】考查有理数的运算,比较大小,绝对值的意义,根据相关运算法则,绝对值的意义,逐一进行判

断即可.熟练掌握相关知识点,是解题的关键.

【详解】解:A、两个有理数的差为正数,则被减数一定大于减数,两个数中不一定有正数,比如0—(一1)

=1;原说法错误,不符合题意;

B、Q<b,|a|不一定小于网,例如:一2<0,|—2|>|0|;原说法错误,不符合题意;

C、〃为任何有理数,则一佃一2上必为非正数;原说法错误,不符合题意:

D、若|a|+Q=0,则。为非正数;原说法正确,符合题意:

故选D.

9.14分)为了求1+2+22+23+...+22。的值,可令S=1+2+22+23+...+220,则2s=24-22+23+

24+...+221,因此2S—S=221—1,所以1+2+22+23+...+22。=22】-1,仿照以上推理,计算

1+5+52+53+―+52024=()

A.52024B.52023-1C.i(52024-1)D.^(52025-1)

【答案】D

【分析】考查了有理数的混合运算,利用错位相减法,消掉相关值,是解题的关键.

根据题目信息,设S=l+5+52+53+...+52024,求出5S,然后错位相减计算即可得解•.

【详解】解:设S=1+5+52+53+…+52024,则5s=5+52+53+54…+52025,

.•.5S-S=52025-1,

52025-1

・•.S=

.-.1+5+52+53+…+52024==1(52025一1),

故选:D.

10.(4分)有理数a,瓦c在数轴上的对应点位置如图所示,下列各式正确的个数是()

1111A

b0ac

©b+a4-(-c)>0@a-b>0③*+尚+亩=1>0

A.1B.2C.3D.4

【答案】B

【分析】考查了数轴与绝对值,由数轴可知:b<Q<a<c,结合有理数〃、机。在数轴上的对应点的位

置、有理数的加减运算及绝对值进行求解即可.

【详解】解:由数轴知,b<Q<a<c,\b\>\a\>\b\<\c\,\a\<|c|,

①b+a+(—c)〈0.故①错误:

@a-b>0,故②正确;

③击+卷+亩=1-1+1=1,放③正确:

④>0,/?<0,c>0,

.吟V0,故④错误;

・•・正确的个数有2个,

故选:B.

二、填空题(共20分)

II.(5分)某年十一黄金周,国内旅游出游人数9.16亿人次,916亿用科学记数法表示为.

【答案】9.16x108

【分析】主要考查科学记数法的表示方法.科学记数法的表示形式为ax10"的形式,其中1WQV10,〃为

整数.确定〃的值时,要看把原数变成〃时,小数点移动了多少位,〃的绝对值9小数点移动的位数相同.

【详解】解:9.16亿=916000000=9.16X10%

故答案为:9.16x108

12.(5分)比较大小:一(十三)---(填"二"、"V”号).

【答案】>

【分析】考查了有理数的大小比较,化简绝对值,去括号,先去括号化简绝对值,再比较有理数的大小即

可.

【详解】解:-(+3=-*=-*-|-詈=-台-程

9,10

;法〈TP

9、10

--->---,

1212'

•”(+3>-1-柒

故答案为:>.

13.(5分)已知心y互为相反数,a,b互为倒数,m=2,则(%+y)一方I勺值为.

【答案】-4

【分析】主要考查相反数,绝对值,倒数,平方的概念及性质:根据互为相反的两个数和为0,|a|二

(a(a>0)

0(a=0),互为倒数的两个数的积为1直接求解即可得到答案;

I—a(a<0)

【详解】解:•••》,y互为相反数,a,b互为倒数,|小=2,

.-.x+y=0,ab=1,n=±2,

.-.n2=4,

故答案为:一4.

14.(5分)定义一种新运算*,规定运算法则为:=(〃?,〃均为整数,且m¥0).例:

2*3=23-2x3=2,再定义另一种新运算“☆”,对于任意有理数〃,b和c,a^b^c=\b-a\+\b-c\^

比如2^3^4=|3—2|+|3—4|=2,请计算[(一2)*2]仝[(一1)«1]仝6=

【答案】14

【分析】考查了含乘方的有理数混合运算,绝对值的求解,根据题目中给出的定义代入数字进行计算即可.

【详解】解:m*n=-mn,a^b^c\b-a\+\b-c|»

­­[(-2)*2]☆[(-l)*l]☆6

=[(-2)2-(-2)x2]4(-1)1-(-1)x1]^6

=8仝0M

=|0-8|+|0-6|

=8+6

=14,

故答案为:14.

三、解答题(共90分)

15.(8分)计算:

(1)(-4)-(+13)+(-5)-(-9);

⑵一(+1.5)-(-4?+3.75-怨.

【答案】⑴-13

⑵一2

【分析】考查了有理数加减中的简便运算,掌握有理数的加减运算法则是解题关键.

(1)利用有理数加法的交换律计算即可得;

(2)先去括号、将分数化成小数,再利用有理数加法的交换律与结合律计算即可得.

【详解】(1)解:原式=一4-13—5+9

=(-4-54-9)-13

=0-13

=-13;

(2)解:原式=-1.5+4.25+3.75-8.5

=-(1.5+8.5)+(4.25+3.75)

=-10+8

=-2.

16.(8分)计算:

⑴(W+%?x(T2);

⑵-12024_3)2x[l+(-l)2]-(-5).

【答案】(1)7

(2)1

【分析】主要考查了有理数的混合运算.

(1)利用乘法的分配律进行运算即可;

(2)先算乘方,再算括号里的加法,接着算乘法与除法,最后算加减即可.

【详解】(1)解:(得+|_mx(_12)

123

=--x(-12)+-x(-12)--x(-12)

=6-8+9

=7;

(2)解:一12024_(_3)2X,+

-1-9x(l+1)^(-5)

10

=-l_9x--(-5)

=-1-10-;-(-5)

=-1+2

=1.

17.(8分)将下列各数填入相应的括号里:

-2.5,510,8,-2,07一鼻-1.121121112•••,p-0.05.

ZZ34

非负分数集合{…};整数集合{

有理数集合{...}:非正整数集合{...}.

【答案】5.0.7,0,8,-2;-2.5,5.0,8,-2,0.7,-1,-0.05;0,-2

【分析】主要考查了有理数及其分类.根据分数、整数、负数、正数和有理数的概念分析判断即可.

【详解】解:非负分数集合{5最0.7,...};

整数集合{0,8,-2,...};

有理数集合{-2.5,5;,0,8,-2,0.7,p-0.05,…};

非正整数集合{0,-2,...}.

18.(8分)已知下列有理数:-(-2),-2.5,0,|-3|,

(1)画出数轴,在数轴上标出这些数表示的点;

(2)用“<”号把这些数连接起来.

【答案】(1)见解析

(2)-2.5<-1<0<-(-2)<|-3|

【分析】考查了在数轴上表示数和有理数大小比较,能准确地在数轴上表示出所给的各个数是解题的关键.

(1)在数轴上直接表示出各个数即可:

(2)根据(1)中数轴上表示的数,结合数轴右边的数比左边的数大即可比较.

【详解】(1)解:•••|一3|=3,-(-2)=2,

・•・在数轴上标出一(一2),-2.5,0,|-3|,-I,如图所示:

-2.5-TO一(一2)|-3|

----1-------1------1—•—1-------1-----;▲11....-i-------1--------1----->

-5-4-3-2-1012345

(2)解:由(1)中数轴可得:一2.5<—:<0<一(一2)

19.(10分)(1)已知|/〃|=5,|川=2,且加<〃,求机-〃值.

(2)已知|%+1|=4,什+2)2=4,若入七注-5,求d的值.

【答案】(I)m-n的值为-7或-3;(2)x~y的值为3或7或5

【分析】(1)利用绝对值的定义计算即可得到结果;

(2)利用绝对值以及乘方的定义求出x与7的值,即可确定出的值.

【详解】解:(1)•.•|〃?|=5,|川=2,

•••/«=±5,/?=±2,

•••〃?〈〃,

,〃尸-5»n=2或m=-5,n=-2,

二〃L〃=-5-2=-7或m-n=-5-(-2)=-3;

综上,〃l〃的值为-7或-3;

(2)小+11=4,()»2)2=4,

AX+1=±4,产2=±2,

•••x=3或.¥=-5,y=0或尸4,

•:x^y>-5,

•••x=3,尸0或x=3,尸4或x=-5,产0,

'-x-y=3或x-y=7或x-y=-5.

综上,x-y的值为3或7或-5.

20.(10分)如图中的不完整数轴的单位长度为1,点儿B,C,。分别表示有埋数a,b,c,d.

DACB

­।~~।_A~~।_।i~।_4_।■_।_।_i_1—►

dach

(1)若点4是原点,则d=_:

(2)若点力,8表示的数互为相反数,求Q+b+c+d的值:

(3)若点。表示的数的倒数是它本身,且2=<:+乙求p的值.

【答案】(1)一9

⑵一7

(3)p的值为一^或3

【分析】主要考查了数轴,相反数,倒数,以及有理数的运算,利用数形结合和分类讨论的思想求解是解

题的关键.

(1)根据数轴可直接得出答案;

(2)根据点44表示的数互为相反数确定原点位置.,据此分别确定〃、4c、d,再计算即可;

(3)根据倒数是它本身的数可得点C表示的数为±1,分两种情况求出力再计算即可.

【详解】(1)解:由数轴可得若点4是原点,则d=-9;

故答案为:-9;

(2)解:•.•点8表示的数互为相反数,

・•・原点为点。,如下图所示:

DACOB

—।_।~~i_।--1_A_।~~A_4_।_।_A_

dacba=-3,b=3,c=—1,d=-6,

•••a+b+c+d=—3+3+(—1)+(-6)=-7;

(3)解:••・点C表示的数的倒数是它本身,

c=±1,

当c=1时,d=-4,

,p=c+d=l+(—4)=一:

当c=-l时,d=-6,

...「=c+d=(-1)+(-6)=

・•.p的值为一;或

21.(12分)在学习了“有理数的乘方”后,小明使用“乘方”这一数学知识脑洞大开地定义出有理数的“除方”

规定:若干个相同有理数(均不能为0)的除法运算叫做除方,如5+5+5,(一2)+(—2)+(—2)+(—2)

等,可以类比有理数的乘方进行运算.小明把5+5+5记作/(3,5),把(一2)+(—2)+(—2尸(-2)记作/

(4,-2).

(1)/(3,1)=;/(2024,-1)=;

(2)求/'(5,?+f(6,—2)的值;

(3)小明深入思考后发现:“除方”运算能够转化成乘方运算,且结果可以写成事的形式,如/(4,2)

2

,求/(2024,3)的值.

=2-2-2-2=2X1X|X|=(1)

【答案】(1)2;1

(2)128

(3)^7

【分析】主要考查了有理数的乘除运算和幕的形式.

(1)根据“有理数的除方''概念计算即可;

(2)根据“有理数的除方”概念、幕的形式计算即可;

(3)根据已知得出,公式f5,Q)=(?A2,计算即可.

【详解】⑴解:/(2024,-1)=(-1)-(-1)-(-1)=1,

20滤个

故答案为:2;1;

(2)解:/■(5』)+/(6,—2)

<11111\

UE+1(-2)+[一2)+(-2)+(-2)+(-2)+(-2)]

/1111'

=(1x2x2x2)4-11X—X—x-x—

=23"©*134

=128;

(3)解:/(2024,3)

=3+3+...+3

2024个

111

=1X-X-X……X-

33_3

2022个

12022

=\3/

32022•

22.(125))出租车司机小李某天上午运营全是在某条南北走向的路上进行的,如果规定向北为正,向南为

负,这天上午他的行车里程(单位:千米)如下:一5.5,+6,-8,+9,+6.5,-7.

起步价超过3千米部分每千米费用等候费

(3千米以内)(不足1千米以1千米计)(不足1分钟以1分钟计)

(单价:元)112.5每4分钟2.5元

(1)若记出发点位置为儿将最后一位乘客送到目的地时,小李在什么位置?

(2)柠汽车耗油量为0.2升/千米,小李接送这六位乘客,出租车共耗油多少升?

(3)小李师傅接到第三位乘客后,刚好遇上高峰期,遇红灯及堵车等候时间约为32分钟,向第三位乘客需支

付车费多少元?

【答案】(1)小李在出发点的北方I千米处

(2)出租车共耗油84升

(3)第三位乘客需支付车费43.5元

【分析】此题主要考查了有理数的混合运算,以及正数和负数的意义:

(1)利用有理数的加法列出算式,再计算即可:

(2)求出各数的绝对值的和,再利用耗油量x行驶路程可得答案;

(3)利用起步价+超过3千米部分的费用+等候费可得答案.

【详解】(1)解:-5.5+6—8+9+6.5—7=1千米,

即小李在出发点的北方1千米处;

(2)解:|-5.5|+|+6|+|—8|+|+9|+|+6.5|+|—7|=42千米,

0.2x42=8.4升,

即出租车共耗油8.4升;

(3)解:11+2.5x(8—3)+半x2.5=43.5元,

即第三位乘客需支付车费43.5元.

23.(14分)如图,数轴上从左至右有4,B,C,。四个点,分别表示有理数a,b,c,d,点4和点C之

间的距离为20个单位长度,且de互为相反数,|b+2|+(28—d)2=0.

」Q£__J

abcd

(l)c=,d.=,b2—a=;

(2)数轴上的动点P从点力出发,以每秒1个单位长度的速度沿数轴向终点。运动,设运动时间为/(£>0)

秒.当点尸运动到点。时,点0从点。出发,以每秒8个单位长度的速度沿数轴在点。和点8之间往返

运动,当点P运动到点。时,点。的运动停止.

①求/为何值时,点P与点。第一次相遇;

②求点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论