山东省蓬莱第二中学2026届数学高二上期末教学质量检测试题含解析_第1页
山东省蓬莱第二中学2026届数学高二上期末教学质量检测试题含解析_第2页
山东省蓬莱第二中学2026届数学高二上期末教学质量检测试题含解析_第3页
山东省蓬莱第二中学2026届数学高二上期末教学质量检测试题含解析_第4页
山东省蓬莱第二中学2026届数学高二上期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省蓬莱第二中学2026届数学高二上期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列中,,,则公比()A. B.C. D.2.某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着A车和B车,同时进来C,D两车.在C,D不相邻的情况下,C和D至少有一辆与A和B车相邻的概率是()A. B.C. D.3.等比数列的第4项与第6项分别为12和48,则公比的值为()A. B.2C.或2 D.或4.命题“,”的否定是A, B.,C., D.,5.若方程表示双曲线,则()A. B.C. D.6.如图给出的是一道典型的数学无字证明问题:各矩形块中填写的数字构成一个无穷数列,所有数字之和等于1.按照图示规律,有同学提出了以下结论,其中正确的是()A.由大到小的第八个矩形块中应填写的数字为B.前七个矩形块中所填写的数字之和等于C.矩形块中所填数字构成的是以1为首项,为公比的等比数列D.按照这个规律继续下去,第n-1个矩形块中所填数字是7.已知数列是等比数列,且,则的值为()A.3 B.6C.9 D.368.设,直线,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.空间直角坐标系中,已知则点关于平面的对称点的坐标为()A. B.C. D.10.抛物线上点的横坐标为4,则到抛物线焦点的距离等于()A.12 B.10C.8 D.611.若方程表示焦点在y轴上的双曲线,则实数m的取值范围为()A. B.C. D.且12.若,(),则,的大小关系是A. B.C. D.,的大小由的取值确定二、填空题:本题共4小题,每小题5分,共20分。13.如图,把椭圆的长轴八等分,过每个分点作轴的垂线交椭圆的上半部分于,,,七个点,是椭圆的一个焦点,则的值为__________14.若,,,,与,,,,,,均为等差数列,则______15.已知数列中,,,则_______.16.如图是用斜二测画法画出水平放置的正三角形ABC的直观图,其中,则三角形的面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足,(1)求数列的通项公式及前10项和;(2)等比数列满足,,求和:18.(12分)如图,在半径为6m的圆形O为圆心铝皮上截取一块矩形材料OABC,其中点B在圆弧上,点A,C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面不计剪裁和拼接损耗,设矩形的边长|AB|xm,圆柱的体积为Vm3.(1)写出体积V关于x的函数关系式,并指出定义域;(2)当x为何值时,才能使做出的圆柱形罐子的体积V最大最大体积是多少?19.(12分)如图,在四棱锥中,底面为矩形,平面平面,.(1)证明:平面平面;(2)若,为棱的中点,,,求二面角的余弦值20.(12分)已知点,直线,圆.(1)若连接点与圆心的直线与直线垂直,求实数的值;(2)若直线与圆相交于两点,且弦的长为,求实数的值21.(12分)如图,在三棱柱中,侧棱垂直于底面,分别是的中点(1)求证:平面平面;(2)求证:平面;(3)求三棱锥体积22.(10分)已知的展开式中,只有第6项的二项式系数最大(1)求n的值;(2)求展开式中含的项

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用等比中项的性质可求得的值,再由可求得结果.【详解】由等比中项的性质可得,解得,又,,故选:C.2、B【解析】先求出基本事件总数,和至少有一辆与和车相邻的对立事件是和都不与和车相邻,由此能求出和至少有一辆与和车相邻的概率【详解】解:某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着车和车,同时进来,两车,在,不相邻的条件下,基本事件总数,和至少有一辆与和车相邻的对立事件是和都不与和车相邻,和至少有一辆与和车相邻的概率:故选:B3、C【解析】根据等比数列的通项公式计算可得;详解】解:依题意、,所以,即,所以;故选:C4、C【解析】特称命题的否定是全称命题,并将结论加以否定,所以命题的否定为:,考点:全称命题与特称命题5、C【解析】根据曲线方程表示双曲线方程有,即可求参数范围.【详解】由题设,,可得.故选:C.6、B【解析】根据题意可得矩形块中的数字从大到小形成等比数列,根据等比数列的通项公式可求.【详解】设每个矩形块中的数字从大到小形成数列,则可得是首项为,公比为的等比数列,,所以由大到小的第八个矩形块中应填写的数字为,故A错误;前七个矩形块中所填写的数字之和等于,故B正确;矩形块中所填数字构成的是以为首项,为公比的等比数列,故C错误;按照这个规律继续下去,第个矩形块中所填数字是,故D错误.故选:B.7、C【解析】应用等比中项的性质有,结合已知求值即可.【详解】由等比数列的性质知:,,,所以,又,所以.故选:C8、A【解析】由可求得实数的值,再利用充分条件、必要条件的定义判断可得出结论.【详解】若,则,解得或,因此,“”是“”的充分不必要条件.故选:A.9、D【解析】根据空间直角坐标系的对称性可得答案.【详解】根据空间直角坐标系的对称性可得关于平面的对称点的坐标为,故选:D.10、C【解析】根据焦半径公式即可求出【详解】因为,所以,所以故选:C11、A【解析】根据双曲线定义,且焦点在y轴上,则可直接列出相关不等式.【详解】若方程表示焦点在y轴上的双曲线,则必有:,且解得:故选:12、A【解析】∵且,∴,又,∴,故选A.二、填空题:本题共4小题,每小题5分,共20分。13、28【解析】设椭圆的另一个焦点为由椭圆的几何性质可知:,同理可得,且,故,故答案为.14、##【解析】由题意利用等差数列的定义和通项公式,求得要求式子的值【详解】设等差数列,,,,的公差为,等差数列,,,,,,的公差为,则有,且,所以,则,故答案为:15、【解析】根据递推公式一一计算即可;【详解】解:因为,所以,,,故答案为:16、【解析】根据直观图和平面图的关系可求出,进而利用面积公式可得三角形的面积【详解】由已知可得则故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),175(2)【解析】(1)由已知结合等差数列的通项公式先求出公差,然后结合通项公式及求和公式即可求解;(2)结合等比数列的性质先求出,然后结合等比数列性质及求和公式可求【小问1详解】解:等差数列满足,,所以,,;【小问2详解】解:因为等比数列满足,,所以或(舍去),由等比数列的性质可知,是以1为首项,4为公比的等比数列,所以,所以18、(1),;(2)时,最大值为m3.【解析】(1)连接,在中,由,利用勾股定理可得,设圆柱底面半径为,求出.利用(其中即可得出;(2)利用导数,求出V的单调性,即可得出结论【小问1详解】连接,在中,,,设圆柱底面半径为,则,即,,其中【小问2详解】由及,得,列表如下:,0↗极大值↘∴当时,有极大值,也是最大值为m319、(1)见解析;(2)【解析】分析:(1)由四边形为矩形,可得,再由已知结合面面垂直的性质可得平面,进一步得到,再由,利用线面垂直的判定定理可得面,即可证得平面;(2)取的中点,连接,以为坐标原点,建立如图所示的空间直角坐标系,由题得,解得.进而求得平面和平面的法向量,利用向量的夹角公式,即可求解二面角的余弦值.详解:(1)证明:∵四边形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD平面ABCD,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD平面PCD,∴PB⊥平面PCD.∵PB平面PAB,∴平面PAB⊥平面PCD.(2)设BC中点为,连接,,又面面,且面面,所以面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)知PB⊥平面PCD,故PB⊥,设,可得所以由题得,解得.所以设是平面的法向量,则,即,可取.设是平面的法向量,则,即,可取.则,所以二面角的余弦值为.点睛:本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20、(1)3(2)实数的值为和【解析】(1)由直线垂直,斜率乘积为可得值;(2)求出加以到直线的距离,由勾股定理求弦长,从而可得参数值【小问1详解】圆,,,,,,【小问2详解】圆半径为,设圆心到直线的距离为,则又由点到直线距离公式得:化简得:,解得:或所以实数的值为和.21、(1)证明见解析;(2)证明见解析;(3)【解析】(1)由直线与平面垂直证明直线与平行的垂直;(2)证明直线与平面平行;(3)求三棱锥的体积就用体积公式.(1)在三棱柱中,底面ABC,所以AB,又因为AB⊥BC,所以AB⊥平面,因为AB平面,所以平面平面.(2)取AB中点G,连结EG,FG,因为E,F分别是、的中点,所以FG∥AC,且FG=AC,因为AC∥,且AC=,所以FG∥,且FG=,所以四边形为平行四边形,所以EG,又因为EG平面ABE,平面ABE,所以平面.(3)因为=AC=2,BC=1,AB⊥BC,所以AB=,所以三棱锥的体积为:==.考点:本小题主要考查直线与直线、直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论