版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省澄江一中2026届高一上数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若关于x的方程log12x=m1-mA.(0,1) B.(1,2)C.(-∞,1)∪(2,+∞) D.(-∞,0)∪(1,+∞)2.设,且,则下列不等式一定成立的是()A. B.C. D.3.已知函数,则函数()A.有最小值 B.有最大值C有最大值 D.没有最值4.若存在正数x使成立,则a的取值范围是A. B.C. D.5.直线的倾斜角为().A. B.C. D.6.函数的零点一定位于下列哪个区间().A. B.C. D.7.已知函数在R上是单调函数,则的解析式可能为()A. B.C. D.8.已知是定义在上的奇函数,且,当且时.已知,若对恒成立,则的取值范围是()A. B.C. D.9.在如图所示中,二次函数与指数函数的图象只可为A. B.C. D.10.已知是偶函数,它在上是减函数.若,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图所示,正方体的棱长为,线段上有两个动点,且,则下列结论中正确的是_____①∥平面;②平面⊥平面;③三棱锥的体积为定值;④存在某个位置使得异面直线与成角°12.已知集合,,则集合中子集个数是____13.已知函数,则__________14.已知直三棱柱的个顶点都在球的球面上,若,,,,则球的直径为________15.命题“”的否定是________16.角的终边经过点,则的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,(1)时,求及;(2)若时,求实数a的取值范围18.如图,已知圆心在x轴正半轴上的圆C与直线5x+12y+21=0相切,与y轴交于M,N两点且∠MCN=120°.(1)求圆C的标准方程;(2)求过点P(0,3)的直线l与圆C交于不同的两点D,E,若|DE|=2,求直线l的方程.19.某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取名按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示.(1)若从第,,组中用分层抽样的方法抽取名志愿者参广场的宣传活动,应从第,,组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组志愿者有被抽中的概率.20.已知函数的部分图象如图所示,点为函数的图象与y轴的一个交点,点B为函数图象上的一个最高点,且点B的横坐标为,点为函数的图象与x轴的一个交点(1)求函数的解析式;(2)已知函数的值域为,求a,b的值21.揭阳市某体育用品商店购进一批羽毛球拍,每件进价为100元,售价为160元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价10元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由题意可得:函数y=log12x∴∴∴实数m的取值范围是(0故选A点睛:本小题考查的是学生对函数最值的应用的知识点的掌握.本题在解答时应该先将函数y=log12x在区间(0,2、D【解析】利用特殊值及不等式的性质判断可得;【详解】解:因为,对于A,若,,满足,但是,故A错误;对于B:当时,,故B错误;对于C:当时没有意义,故C错误;对于D:因为,所以,故D正确;故选:D3、B【解析】换元法后用基本不等式进行求解.【详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B4、D【解析】根据题意,分析可得,设,利用函数的单调性与最值,即可求解,得到答案【详解】根据题意,,设,由基本初等函数的性质,得则函数在R上为增函数,且,则在上,恒成立;若存在正数x使成立,即有正实数解,必有;即a的取值范围为;故选D【点睛】本题主要考查了函数单调性的应用,以及不等式的有解问题,其中解答中合理把不等式的有解问题转化为函数的单调性与最值问题是解答的关键,着重考查分析问题和解答问题的能力,属于中档试题5、B【解析】设直线的倾斜角为∵直线方程为∴∵∴故选B6、C【解析】根据零点存在性定理可得结果.【详解】因为函数的图象连续不断,且,,,,根据零点存在性定理可知函数的零点一定位于区间内.故选:C【点睛】关键点点睛:掌握零点存在性定理是解题关键.7、C【解析】根据条件可知当时,为增函数,在在为增函数,且,结合各选项进行分析判断即可【详解】当时,为增函数,则在上为增函数,且,A.在上为增函数,,故不符合条件;B.为减函数,故不符合条件;C.在上为增函数,,故符合条件;D.为减函数,故不符合条件.故选:C.8、A【解析】由奇偶性分析条件可得在上单调递增,所以,进而得,结合角的范围解不等式即可得解.【详解】因为是定义在上的奇函数,所以当且时,根据的任意性,即的任意性可判断在上单调递增,所以,若对恒成立,则,整理得,所以,由,可得,故选:A.【点睛】关键点点睛,本题解题关键是利用,结合变量的任意性,可判断函数的单调性,属于中档题.9、C【解析】指数函数可知,同号且不相等,再根据二次函数常数项为零经过原点即可得出结论【详解】根据指数函数可知,同号且不相等,则二次函数的对称轴在轴左侧,又过坐标原点,故选:C【点睛】本题主要考查二次函数与指数函数的图象与性质,属于基础题10、C【解析】根据偶函数的性质结合单调性可得,即可根据对数函数单调性解出不等式.【详解】由于函数是偶函数,由得,又因为函数在上是减函数,所以在上是增函数,则,即,解得.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、①②③④【解析】在①中,由EF∥BD,得EF∥平面ABCD;在②中,连接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,从而得到面ACF⊥平面BEF;在③中,三棱锥E﹣ABF的体积与三棱锥A﹣BEF的体积相等,从而三棱锥E﹣ABF的体积为定值;在④中,令上底面中心为O,得到存在某个位置使得异面直线AE与BF成角30°【详解】由正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且,知:在①中,由EF∥BD,且EF⊄平面ABCD,BD⊂平面ABCD,得EF∥平面ABCD,故①正确;在②中,连接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,而BE⊂面BDD1B1,BF⊂面BDD1B1,∴AC⊥平面BEF,∵AC⊂平面ACF,∴面ACF⊥平面BEF,故②正确;在③中,三棱锥E﹣ABF的体积与三棱锥A﹣BEF的体积相等,三棱锥A﹣BEF的底面积和高都是定值,故三棱锥E﹣ABF的体积为定值,故③正确;在④中,令上底面中心为O,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,可求解∠OBC1=300,故存在某个位置使得异面直线AE与BF成角30°,故④正确故答案为①②③④【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于中档题12、4【解析】根据题意,分析可得集合的元素为圆上所有的点,的元素为直线上所有的点,则中元素为直线与圆的交点,由直线与圆的位置关系分析可得直线与圆的交点个数,即可得答案【详解】由题意知中的元素为圆与直线交点,因为圆心(1,-2)到直线2x+y-5=0的距离∴直线与圆相交∴集合有两个元素,故集合中子集个数为4故答案为4【点睛】本题考查直线与圆的位置关系,涉及集合交集的意义,解答本题的关键是判定直线与圆的位置关系,以及运用集合的结论:一个含有个元素的集合的子集的个数为个.13、3【解析】14、【解析】根据题设条件可以判断球心的位置,进而求解【详解】因为三棱柱的个顶点都在球的球面上,若,,,,所以三棱柱的底面是直角三角形,侧棱与底面垂直,的外心是斜边的中点,上下底面的中心连线垂直底面,其中点是球心,即侧面,经过球球心,球的直径是侧面的对角线的长,因为,,,所以球的半径为:故答案为:15、【解析】由否定的定义写出即可.【详解】命题“”的否定是“”故答案为:16、【解析】以三角函数定义分别求得的值即可解决.【详解】由角的终边经过点,可知则,,所以故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)先求出集合,,,然后结合集合的交、并运算求解即可;(2)由,得,然后结合集合的包含关系对B是否为空集进行分讨论,即可求解【小问1详解】∵由,得由题可知∴或∴∴;【小问2详解】∵,∴分两种情况考虑:时,,解得:时,则,解得:所以a取值范围为18、(1)(x﹣1)2+y2=4;(2)y或x=0【解析】(1)由题意设圆心为,且,再由已知求解三角形可得,于是可设圆的标准方程为,由点到直线的距离列式求得值,则圆的标准方程可求;(2)当直线的斜率存在时,设直线的方程为,即,利用圆心到直线的距离等于半径列式求得,可得直线方程,验证当时满足题意,则答案可求【详解】解:(1)由题意设圆心为,且,由,可得中,,,则,于是可设圆的标准方程为,又点到直线的距离,解得或(舍去)故圆的标准方程为;(2)当直线的斜率存在时,设直线的方程为,即则由题意可知,圆心到直线的距离故,解得又当时满足题意,故直线的方程为或【点睛】本题考查圆的标准方程的求法,考查直线与圆位置关系的应用,考查计算能力,是中档题.19、(1)分别抽取人,人,人;(2)【解析】(1)频率分布直方图各组频率等于各组矩形的面积,进而算出各组频数,再根据分层抽样总体及各层抽样比例相同求解;(2)列出从名志愿者中随机抽取名志愿者所有的情况,再根据古典概型概率公式求解.【详解】(1)第组的人数为,第组的人数为,第组的人数为,因为第,,组共有名志愿者,所以利用分层抽样的方法在名志愿者中抽取名志愿者,每组抽取的人数分别为:第组:;第组:;第组:.所以应从第,,组中分别抽取人,人,人.(2)设“第组的志愿者有被抽中”为事件.记第组的名志愿者为,,,第组的名志愿者为,,第组的名志愿者为,则从名志愿者中抽取名志愿者有:,,,,,,,,,,,,,,,共有种.其中第组的志愿者被抽中的有种,答:第组的志愿者有被抽中的概率为【点睛】本题考查频率分布直方图,分层抽样和古典概型,注意列举所有情况时不要遗漏.20、(1)(2)或【解析】(1)根据图象可得函数的周期,利用求出,根据五点画图法求出,根据点A坐标求出A,进而得出解析式;(2)根据三角函数的性质求出的值域,由(1)知,对的取值分类讨论,列出方程组,解之即可.【小问1详解】由函数的部分图象可知,函数的周期,可得,由五点画图法可知,可得,有,又由,可得,故有函数的解析式为;【小问2详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职化工(化工安全规范)试题及答案
- 2025年高职烹饪工艺与营养(烹饪工艺)试题及答案
- 2025年中职(制冷技术)制冷系统维护试题及答案
- 2025年高职农业电气(农村电网勘测)试题及答案
- 智慧项目档案全生命周期智能检索与利用规范
- 养老院老人紧急救援人员激励制度
- 养老院老人活动管理制度
- 养老院老人外出活动管理制度
- 养老院消防通道及疏散预案制度
- 养老院入住资格审查制度
- 办公用品、耗材采购服务投标方案
- 重症医学科医院感染控制原则专家共识(2024)解读
- 定制手机采购合同协议
- 数据治理实施方案
- 煤磨动火作业施工方案
- 工程施工及安全管理制度
- 虚拟电厂解决方案
- 嗜酸性粒细胞与哮喘发病关系的研究进展
- 《陆上风电场工程可行性研究报告编制规程》(NB/T 31105-2016)
- 京瓷哲学手册样本
- 五年级简便计算100题
评论
0/150
提交评论