河南省永城市2026届高一上数学期末经典试题含解析_第1页
河南省永城市2026届高一上数学期末经典试题含解析_第2页
河南省永城市2026届高一上数学期末经典试题含解析_第3页
河南省永城市2026届高一上数学期末经典试题含解析_第4页
河南省永城市2026届高一上数学期末经典试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省永城市2026届高一上数学期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度取决于信道带宽,信道内信号的平均功率,信道内部的高斯噪声功率的大小,其中叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽,而将信噪比从1000提升至4000,则大约增加了()附:A.10% B.20%C.50% D.100%2.已知弧长为的弧所对的圆心角为,则该弧所在的扇形面积为()A. B.C. D.3.已知函数,,则的零点所在的区间是A. B.C. D.4.设函数与的图象的交点为,则所在的区间为()A B.C. D.5.若方程在区间内有两个不同的解,则A. B.C. D.6.已知函数在上是增函数,则实数的取值范围是A. B.C. D.7.已知全集,,,则()=()A.{} B.{}C.{} D.{}8.函数的单调减区间为()A. B.C. D.9.已知向量,,那么()A.5 B.C.8 D.10.已知集合A={x∈N|1<x<log2k},集合A中至少有2个元素,则()A.k≥4 B.k>4C.k≥8 D.k>8二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,若实数满足,且,则的取值范围是_______________________12.若点在函数的图象上,则的值为______.13.《九章算术》是我国古代数学成就的杰出代表作,其中"方田"章给出了计算弧田面积时所用的经验公式,即弧田面积(弦×矢+矢2),弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”指圆弧顶到弦的距离(等于半径长与圆心到弦的距离之差),现有圆心角为2,半径为1米的弧田,按照上述经验公式计算所得弧田面积是_________平方米.(结果保留两位有效数字,参考数据:,)14.已知函数恰有2个零点,则实数m的取值范围是___________.15.已知,,则_________.16.若,,且,则的最小值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知若,求方程的解;若关于x的方程在区间上有两个不相等的实根、:求实数k的取值范围;证明:18.已知集合,集合(1)当时,求;(2)若,求实数的取值范围;(3)若,求实数的取值范围19.脱贫是政府关注民生的重要任务,了解居民的实际收入状况就显得尤为重要.现从某地区随机抽取个农户,考察每个农户的年收入与年积蓄的情况进行分析,设第个农户的年收入(万元),年积蓄(万元),经过数据处理得(Ⅰ)已知家庭的年结余对年收入具有线性相关关系,求线性回归方程;(Ⅱ)若该地区的农户年积蓄在万以上,即称该农户已达小康生活,请预测农户达到小康生活的最低年收入应为多少万元?附:在中,其中为样本平均值.20.已知cos(α-β)cosβ-sin(α-β)sinβ=,<α<2π(1)求sin(2α+)的值;(2)求tan(α-)的值21.求解下列问题(1)已知,且为第二象限角,求的值.(2)已知,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据题意,计算出值即可;【详解】当时,,当时,,因为所以将信噪比从1000提升至4000,则大约增加了20%,故选:B.【点睛】本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用.2、B【解析】先求得扇形的半径,由此求得扇形面积.【详解】依题意,扇形的半径为,所以扇形面积为.故选:B3、C【解析】由题意结合零点存在定理确定的零点所在的区间即可.【详解】由题意可知函数在上单调递减,且函数为连续函数,注意到,,,,结合函数零点存在定理可得的零点所在的区间是.本题选择C选项.【点睛】应用函数零点存在定理需要注意:一是严格把握零点存在性定理的条件;二是连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分条件,而不是必要条件;三是函数f(x)在(a,b)上单调且f(a)f(b)<0,则f(x)在(a,b)上只有一个零点.4、C【解析】令,则,故的零点在内,因此两函数图象交点在内,故选C.【方法点睛】本题主要考查函数图象的交点与函数零点的关系、零点存在定理的应用,属于中档题.零点存在性定理的条件:(1)利用定理要求函数在区间上是连续不断的曲线;(2)要求;(3)要想判断零点个数还必须结合函数的图象与性质(如单调性、奇偶性).5、C【解析】由,得,所以函数的图象在区间内的对称轴为故当方程在区间内有两个不同的解时,则有选C6、A【解析】当时,在上是增函数,且恒大于零,即当时,在上是减函数,且恒大于零,即,因此选A点睛:1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”

函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反7、D【解析】先求得,再求与集合的交集即可.【详解】因为全集,,,故可得,则().故选:.8、A【解析】先求得函数的定义域,利用二次函数的性质求得函数的单调区间,结合复合函数单调性的判定方法,即可求解.【详解】由不等式,即,解得,即函数的定义域为,令,可得其图象开口向下,对称轴的方程为,当时,函数单调递增,又由函数在定义域上为单调递减函数,结合复合函数的单调性的判定方法,可得函数的单调减区间为.故选:A.9、B【解析】根据平面向量模的坐标运算公式,即可求出结果.【详解】因为向量,,所以.故选:B.10、D【解析】首先确定集合A,由此得到log2k>3,即可求k的取值范围.【详解】∵集合A={x∈N|1<x<log2k},集合A中至少有2个元素,∴A={2,3},则log2k>3,可得k>8.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】结合图象确定a,b,c的关系,由此可得,再利用基本不等式求其最值.【详解】解:因为函数,若实数a,b,c满足,且,;如图:,且;令;因为;,当且仅当时取等号;,;故答案为:12、【解析】将点代入函数解析式可得的值,再求三角函数值即可.【详解】因为点在函数的图象上,所以,解得,所以,故答案为:.13、【解析】由题设可得“弦”为,“矢”为,结合弧田面积公式求面积即可.【详解】由题设,“弦”为,“矢”为,所以所得弧田面积是.故答案为:.14、【解析】讨论上的零点情况,结合题设确定上的零点个数,根据二次函数性质求m的范围.【详解】当时,恒有,此时无零点,则,∴要使上有2个零点,只需即可,故有2个零点有;当时,存在,此时有1个零点,则,∴要使上有1个零点,只需即可,故有2个零点有;综上,要使有2个零点,m的取值范围是.故答案为:.15、【解析】利用两角差的正切公式可计算出的值.【详解】由两角差的正切公式得.故答案为:.【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.16、##【解析】运用均值不等式中“1”的妙用即可求解.【详解】解:因为,,且,所以,当且仅当时等号成立,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),见解析【解析】当时,分类讨论,去掉绝对值,直接进行求解,即可得到答案讨论两个根、的范围,结合一元二次方程根与系数之间的关系进行转化求解【详解】当时,,当时,,由,得,得舍或;当时,,由得舍;故当时,方程的解是不妨设,因为,若、,与矛盾,若、,与是单调函数矛盾,则;则…①…②由①,得:,由②,得:;的取值范围是;联立①、②消去k得:,即,即,则,,,即【点睛】本题主要考查了函数与方程的应用,根据条件判断根的范围,以及利用一元二次方程与一次方程的性质进行转化是解决本题的关键,着重考查了分析问题和解答问题的能力,试题综合性较强,属于中档试题18、(1);(2);(3)【解析】(1)求出集合,利用并集的定义可求得集合;(2)利用可得出关于实数的不等式组,由此可解得实数的取值范围;(3)分和两种情况讨论,结合可得出关于实数的不等式组,可求得实数的取值范围.【详解】(1)当时,,则;(2)由知,解得,即的取值范围是;(3)由得①若,即时,符合题意;②若,即时,需或得或,即综上知,即实数的取值范围为【点睛】易错点睛:在求解本题第(3)问时,容易忽略的情况,从而导致求解错误.19、(Ⅰ);(Ⅱ)万元.【解析】(Ⅰ)利用题中所给数据和最小二乘法求出相关系数,进而求出线性回归方程;(Ⅱ)利用线性回归方程进行预测.试题解析:(Ⅰ)由题意知所以线性回归方程为(Ⅱ)令得由此可预测该农户的年收入最低为万元.20、(1);(2).【解析】(1)先根据题目中的条件结合同角公式求出,利用二倍角公式求出,利用两角和的正弦公式即可求出的值(2)根据第一问求得的的值直接求出的值,再利用两角差的正切公式即可求出的值【详解】解:(1)∵cos(α-β)cosβ-sin(α-β)sinβ=,∴cos[(α-β)+β]=,即cos∵<α<2π,∴sinα=∴sin2α=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论