版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省河津二中2026届高一数学第一学期期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数的零点与的零点之差的绝对值不超过0.25,则可以是A B.C. D.2.实数满足,则下列关系正确的是A. B.C. D.3.=A.- B.C.- D.4.已知,并且是终边上一点,那么的值等于A. B.C. D.5.若-4<x<1,则()A.有最小值1 B.有最大值1C.有最小值-1 D.有最大值-16.若,,,则实数,,的大小关系为A. B.C. D.7.设函数,,则是()A.最小正周期为的偶函数 B.最小正周期为的奇函数C.最小正周期为的偶函数 D.最小正周期为的奇函数8.下列说法中,正确的是()A.若,则B.函数与函数是同一个函数C.设点是角终边上的一点,则D.幂函数的图象过点,则9.已知函数,若函数恰有8个不同零点,则实数a的取值范围是()A. B.C. D.10.用二分法求方程的近似解时,可以取的一个区间是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知的定义域为,那么a的取值范围为_________12.函数,在区间上增数,则实数t的取值范围是________.13.若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;对于集合,,若这两个集合构成“鲸吞”,则的取值为____________14.已知直线过两直线和的交点,且原点到该直线的距离为,则该直线的方程为_____.15.______________16.在单位圆中,已知角的终边与单位圆的交点为,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)求函数的单调递增区间;(2)当时,函数的值域为,求实数的范围18.已知集合,函数的定义域为集合.(1)若,求实数的取值范围;(2)求满足的实数的取值范围.19.“绿水青山就是金山银山”.某企业决定开发生产一款大型净水设备,生产这款设备的年固定成本为600万元,每生产台需要另投入成本万元.当年产量x不足100台时,;当年产量x不少于100台时,.若每台设备的售价为100万元时,经过市场分析,该企业生产的净水设备能全部售完(1)求年利润y(万元)关于年产量x(台)的函数关系式;(2)当年产量x为多少台时,该企业在这一款净水设备的生产中获利最大,最大利润是多少万元?20.某网上电子商城销售甲、乙两种品牌的固态硬盘,甲、乙两种品牌的固态硬盘保修期均为3年,现从该商城已售出的甲、乙两种品牌的固态硬盘中各随机抽取50个,统计这些固态硬盘首次出现故障发生在保修期内的数据如下:型号甲乙首次出现故障的时间x(年)硬盘数(个)212123假设甲、乙两种品牌的固态硬盘首次出现故障相互独立.(1)从该商城销售的甲品牌固态硬盘中随机抽取一个,试估计首次出现故障发生在保修期内的概率;(2)某人在该商城同时购买了甲、乙两种品牌的固态硬盘各一个,试估计恰有一个首次出现故障发生在保修期的第3年(即)的概率.21.已知.(1)若为锐角,求的值.(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】因为函数g(x)=4x+2x-2在R上连续,且,,设函数的g(x)=4x+2x-2的零点为,根据零点存在性定理,有,则,所以,又因为f(x)=4x-1的零点为,函数f(x)=(x-1)2的零点为x=1,f(x)=ex-1的零点为,f(x)=ln(x-0.5)的零点为,符合为,所以选A考点:零点的概念,零点存在性定理2、A【解析】根据指数和对数的运算公式得到【详解】=故A正确.故B不正确;故C,D不正确.故答案为A.【点睛】这个题目考查了指数和对数的公式的互化,以及换底公式的应用,较为简单.3、A【解析】.考点:诱导公式4、A【解析】由题意得:,选A.5、D【解析】先将转化为,根据-4<x<1,利用基本不等式求解.【详解】又∵-4<x<1,∴x-1<0∴-(x-1)>0∴.当且仅当x-1=,即x=0时等号成立故选:D【点睛】本题主要考查基本不等式的应用,还考查了转化求解问题的能力,属于基础题.6、A【解析】先求出a,b,c的范围,再比较大小即得解.【详解】由题得,,所以a>b>c.故选A【点睛】本题主要考查对数函数和指数函数的单调性的应用,考查实数大小的比较,意在考查学生对这些知识的理解掌握水平和分析推理能力.7、D【解析】通过诱导公式,结合正弦函数的性质即可得结果.【详解】,所以,,所以则是最小正周期为的奇函数,故选:D.8、D【解析】A选项,举出反例;B选项,两函数定义域不同;C选项,利用三角函数定义求解;D选项,待定系数法求出解析式,从而得到答案.【详解】A选项,当时,满足,而,故A错误;B选项,定义域为R,定义域为,两者不是同一个函数,B错误;C选项,,C错误;D选项,设,将代入得:,解得:,所以,D正确.故选:D9、A【解析】利用十字相乘法进行因式分解,然后利用换元法,作出的图象,利用数形结合判断根的个数即可.【详解】由,得,解得或,作出的图象如图,则若,则或,设,由得,此时或,当时,,有两根,当时,,有一个根,则必须有,有个根,设,由得,若,由,得或,有一个根,有两个根,此时有个根,不满足题意;若,由,得,有一个根,不满足条件.若,由,得,有一个根,不满足条件;若,由,得或或,当,有一个根,当时,有个根,当时,有一个根,此时共有个根,满足题意.所以实数a的取值范围为.故选:A.【点睛】方法点睛:已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题第II卷(非选择题10、B【解析】构造函数并判断其单调性,借助零点存在性定理即可得解.【详解】,令,在上单调递增,并且图象连续,,,在区间内有零点,所以可以取的一个区间是.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据题意可知,的解集为,由即可求出【详解】依题可知,的解集为,所以,解得故答案为:12、【解析】作出函数的图象,数形结合可得结果.【详解】解:函数的图像如图.由图像可知要使函数是区间上的增函数,则.故答案为【点睛】本题考查函数的单调性,考查函数的图象的应用,考查数形结合思想,属于简单题目.13、0【解析】根据题中定义,结合子集的定义进行求解即可.【详解】当时,,显然,符合题意;当时,显然集合中元素是两个互为相反数的实数,而集合中的两个元素不互为相反数,所以集合、之间不存在子集关系,不符合题意,故答案为:14、或【解析】先求两直线和的交点,再分类讨论,先分析所求直线斜率不存在时是否符合题意,再分析直线斜率存在时,设斜率为,再由原点到该直线的距离为,求出,得到答案.【详解】由和,得,即交点坐标为,(1)当所求直线斜率不存在时,直线方程为,此时原点到直线的距离为,符合题意;(2)当所求直线斜率存在时,设过该点的直线方程为,化为一般式得,由原点到直线的距离为,则,解得,得所求直线的方程为.综上可得,所求直线的方程为或故答案为:或【点睛】本题考查了求两直线的交点坐标,由点到直线的距离求参,还考查了对直线的斜率是否存在分类讨论的思想,属于中档题.三、15、【解析】利用指数的运算法则和对数的运算法则即求.【详解】原式.故答案为:.16、【解析】先由三角函数定义得,再由正切的两角差公式计算即可.【详解】由三角函数的定义有,而.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)根据正弦函数的性质计算可得;(2)首先求出函数取最大值时的取值集合,即可得到,再根据函数在上是减函数,且,则的最大值为内使函数值为的值,即可求出的取值范围;【小问1详解】解:对于函数,令,,求得,故函数的单调递增区间为,【小问2详解】解:令,,解得,.即时取得最大值因为当时,取到最大值,所以又函数在上是减函数,且,故的最大值为内使函数值为的值,令,即,因为,所以,所以,解得,所以的取值范围是18、(1)或;(2)或.【解析】(1)由知4满足函数的定义域,由此可得,解不等式可得所求范围.(2)由可得,再根据的大小关系求得集合A,然后根据转化为关于实数的不等式组,解不等式组可得所求范围试题解析:(1)因为,∴,解得或.∴实数的取值范围为(2)由于,当时,即时,,函数无意义,∴,由,得,解得,∴.①当,即时,,由得,解得;②当,即时,,,此时不满足;③当,即时,,由得,解得.又,故.综上或∴实数的取值范围是或.点睛:(1)解答本题时要注意分类讨论的运用,根据实数的不同的取值得到不同的集合;另外还应注意转化思想的运用,在本题中将集合间的包含关系转化为不等式组求解(2)对于题中的对数函数,要注意定义域的限制,特别是在本题中得到这一隐含条件是被容易忽视的问题19、(1)(2)年产量为102台时,该企业在这一款净水设备的生产中获利最大,最大利润是2798万元【解析】(1)根据利润=销售额−成本,通过分类讨论,即可求出年利润关于年产量的函数关系式;(2)通过求分段函数的最大值即可得出答案.【小问1详解】由条件可得年利润y(万元)关于年产量x(台)的函数关系式:化简得:【小问2详解】当时,,,当时,取最大值(万元)当时,,,(万元)当时,即台时,取最大值2798万元综上:年产量为102台时,该企业在这一款净水设备的生产中获利最大,最大利润是2798万元20、(1);(2)【解析】(1)由频率表示概率即可求出;(2)先分别求出从甲、乙两种品牌随机抽取一个,首次出现故障发生在保修期的第3年的概率,即可求出恰有一个首次出现故障发生在保修期的第3年的概率.【详解】解:(1)在图表中,甲品牌的个样本中,首次出现故障发生在保修期内的概率为:,设从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期内为事件,利用频率估计概率,得,即从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期内的概率为:;(2)设从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期的第3年为事件,从该商城
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护士岗位技能考试题及答案
- 电子商务专业期末试卷及答案资源
- 建筑给排水考试大全及答案(题库)
- 蚂蚁电商考试试题及答案
- 执业护士考试职业道德规范试题及答案
- 院感三基试题及答案2025年
- 2025年执业药师继续教育题库及参考参考答案
- 阿里云客服试题和答案
- 急危重症护理学模拟试题及参考答案
- 广西玉林职业技术学院使用教职人员招聘笔试真题附答案详解
- 单杠引体向上教学课件
- 子宫内膜异位症病因课件
- 新型农业经营主体法律制度完善研究
- GB/T 18910.103-2025液晶显示器件第10-3部分:环境、耐久性和机械试验方法玻璃强度和可靠性
- 经圆孔翼腭神经节射频调节术
- 梦虽遥追则能达愿虽艰持则可圆模板
- 能源与动力工程测试技术 课件 第一章 绪论确定
- 配件售后管理制度规范
- 浙江省绍兴市上虞区2024-2025学年七年级上学期期末语文试题(解析版)
- 《隶书千字文》-清席夔
- 2024校长在寒假期末教职工大会上精彩发言主要引用3个关键词善待自己改变自己提升自己
评论
0/150
提交评论