湖南省湘潭市一中2026届高一上数学期末联考试题含解析_第1页
湖南省湘潭市一中2026届高一上数学期末联考试题含解析_第2页
湖南省湘潭市一中2026届高一上数学期末联考试题含解析_第3页
湖南省湘潭市一中2026届高一上数学期末联考试题含解析_第4页
湖南省湘潭市一中2026届高一上数学期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省湘潭市一中2026届高一上数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,,若,则A. B.C. D.2.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把郑铁饼者张开的双臂近似看成一张拉满弦的“弓”,郑铁饼者的手臂长约为米,肩宽约为米,“弓”所在圆的半径约为1.25米,则郑铁饼者双手之间的距离约为()A.1.01米 B.1.76米C.2.04米 D.2.94米3.已知且点在的延长线上,,则的坐标为()A. B.C. D.4.已知,,若对任意,或,则的取值范围是A. B.C. D.5.已知函数,若,则恒成立时的范围是()A. B.C. D.6.已知命题,则命题的否定为()A. B.C. D.7.一个扇形的面积是,它的半径是,则该扇形圆心角的弧度数是A. B.1C.2 D.8.已知集合则()A. B.C. D.9.设,则函数的零点所在的区间为()A. B.C. D.10.已知角终边经过点,且,则的值是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,是相互独立事件,且,,则______12.在平面直角坐标系xOy中,角α与角β均以x轴的非负半轴为始边,它们的终边关于坐标原点对称.若sinα=113.已知函数同时满足以下条件:①定义域为;②值域为;③.试写出一个函数解析式___________.14.已知,则的最小值为___________15.__________.16.给出下列四个命题:①函数y=2sin(2x-)的一条对称轴是x=;②函数y=tanx的图象关于点(,0)对称;③正弦函数在第一象限内为增函数;④存在实数α,使sinα+cosα=.以上四个命题中正确的有____(填写正确命题前面的序号).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为偶函数,且图象的相邻两对称轴间的距离为(1)求的解析式;(2)将函数的图象向右平移个单位长度,再把横坐标缩小为原来的(纵坐标不变),得到函数的图象,若在上有两个不同的根,求m的取值范围18.已知函数为偶函数.(1)求的值;(2)求的最小值;(3)若对恒成立,求实数的取值范围.19.已知函数,.(1)求函数的值域;(2)若存在实数,使得在上有解,求实数的取值范围.20.某港口水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是水深数据:t(小时)03691215182124y(米)10.013.09.97.010013.010.17.010.0据上述数据描成的曲线如图所示,该曲线可近似的看成函数的图象(1)试根据数据表和曲线,求的解析式;(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?21.(1)已知,求的值;(2)已知,,且,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用两个集合的交集所包含的元素,求得的值,进而求得.【详解】由于,故,所以,故,故选A.【点睛】本小题主要考查两个集合交集元素的特征,考查两个集合的并集的概念,属于基础题.2、B【解析】先由题意求出“弓”所在的弧长所对的圆心角,然后利用三角函数求弦长【详解】由题意得,“弓”所在的弧长为,所以其所对的圆心角的绝对值为,所以两手之间的距离故选:B3、D【解析】设出点的坐标,根据列式,根据向量的坐标运算,求得点的坐标.【详解】设,依题意得,即,故,解得,所以.故选D.【点睛】本小题主要考查平面向量共线的坐标运算,考查运算求解能力,属于基础题.4、C【解析】先判断函数g(x)的取值范围,然后根据或成立求得m的取值范围.【详解】∵g(x)=﹣2,当x<时,恒成立,当x≥时,g(x)≥0,又∵∀x∈R,f(x)<0或g(x)<0,∴f(x)=m(x﹣2m)(x+m+3)<0在x≥时恒成立,即m(x﹣2m)(x+m+3)<0在x≥时恒成立,则二次函数y=m(x﹣2m)(x+m+3)图象开口只能向下,且与x轴交点都在(,0)的左侧,∴,即,解得<m<0,∴实数m的取值范围是:(,0)故选C【点睛】本题主要考查指数函数和二次函数的图象和性质,根据条件确定f(x)=m(x﹣2m)(x+m+3)<0在x≥时恒成立是解决本题的关键,综合性较强,难度较大5、B【解析】利用条件f(1)<0,得到0<a<1.f(x)在R上单调递减,从而将f(x2+tx)<f(x﹣4)转化为x2+tx>x﹣4,研究二次函数得解.【详解】∵f(﹣x)=a﹣x﹣ax=﹣f(x),∴f(x)是定义域为R的奇函数,∵f(x)=ax﹣a﹣x(a>0且a≠1),且f(1)<0,∴,又∵a>0,且a≠1,∴0<a<1∵ax单调递减,a﹣x单调递增,∴f(x)在R上单调递减不等式f(x2+tx)+f(4﹣x)<0化为:f(x2+tx)<f(x﹣4),∴x2+tx>x﹣4,即x2+(t﹣1)x+4>0恒成立,∴△=(t﹣1)2﹣16<0,解得:﹣3<t<5故答案为B【点睛】本题主要考查函数的奇偶性和单调性,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.6、D【解析】由特称(存在)量词命题的否定是全称量词命题直接可得.【详解】由特称(存在)量词命题的否定是全称量词命题直接可得:命题的否定为:.故选:D7、C【解析】由题意首先求得弧长,然后求解圆心角的弧度数即可.【详解】设扇形的弧长为,由题意可得:,则该扇形圆心角的弧度数是.本题选择C选项.【点睛】本题主要考查扇形面积公式,弧度数的定义等知识,意在考查学生的转化能力和计算求解能力.8、D【解析】首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得,得到结果.【详解】由解得,所以,又因为,所以,故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.9、B【解析】根据的单调性,结合零点存在性定理,即可得出结论.【详解】在单调递增,且,根据零点存在性定理,得存在唯一的零点在区间上.故选:B【点睛】本题考查判断函数零点所在区间,结合零点存在性定理的应用,属于基础题.10、A【解析】由终边上的点及正切值求参数m,再根据正弦函数的定义求.【详解】由题设,,可得,所以.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由相互独立事件的性质和定义求解即可【详解】因为,是相互独立事件,所以,也是相互独立事件,因为,,所以,故答案为:12、-14【解析】根据题意,利用同角三角函数的基本关系,再由诱导公式,可得答案.【详解】∵角α与角β的终边关于坐标原点对称,所以β=α+由诱导公式可得:sinβ=-故答案为:-13、或(答案不唯一)【解析】由条件知,函数是定义在R上的偶函数且值域为,可以写出若干符合条件的函数.【详解】函数定义域为R,值域为且为偶函数,满足题意的函数解析式可以为:或【点睛】本题主要考查了函数的定义域、值域、奇偶性以,属于中档题.14、【解析】根据基本不等式,结合代数式的恒等变形进行求解即可.【详解】解:因为a>0,b>0,且4a+b=2,所以有:,当且仅当时取等号,即时取等号,故答案为:.15、1【解析】应用诱导公式化简求值即可.【详解】原式.故答案为:1.16、①②【解析】对于①,将x=代入得是对称轴,命题正确;对于②,由正切函数的图象可知,命题正确;对于③,正弦函数在上是增函数,但在第一象限不能说是增函数,所以③不正确;对于④,,最大值为,不正确;故填①②.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1):先利用辅助角公式化简,然后利用偶函数的性质,和两对称轴的距离可求出,便可写出;(2):将图像平移得到,求其在定义域内的两根转为两个函数由两个交点,便可求出m的取值范围.【小问1详解】函数为偶函数令,可得图像的相邻两对称轴间的距离为【小问2详解】将函数的图像向右平移个单位长度,可得的图像,再将横坐标缩小为原来的(纵坐标不变),得到函数的图像若在上有两个不同的根,则在上有两个不同的根,即函数的图像与直线在上有两个不同的交点.,,,求得故的取值范围为.18、(1)(2)(3)【解析】(1)运用偶函数的定义和对数的运算性质,结合恒等式的性质可得所求值;(2)运用对数运算性质及均值不等式即可得到结果;(3)先证明函数单调性,化抽象不等式为具体不等式,转求函数的最值即可.【小问1详解】因为为偶函数,所以,所以,所以,所以.【小问2详解】因为,所以(当且仅当时等号成立),所以最小值为.【小问3详解】,任取且,所以,因为且,所以,所以,所以,所以,所以在上为增函数,又因为为偶函数,所以,当时,,当时,,所以,设(当且仅当时,等号成立),因为,所以等号能成立,所以,所以,所以,综上,.19、(1)(2)【解析】(1)结合题意得Mx=log2x,0<x<2(2)由题知,进而换元得在上有解,再根据对勾函数求最值即可;【小问1详解】解:函数,因为,所以当时,,.当时,,.即Mx当时,;当时,.综上:值域为.【小问2详解】解:可以化为即:令,,所以,所以所以在上有解即在上有解令,则而当且仅当,即时取等号所以实数的取值范围是20、(1);(2)至或至.【解析】(1)根据数据,可得,由,可求,从而可求函数的表达式;(2)由题意,水深,即,从而可求t的范围,即可得解;【详解】解:(1)根据数据,可得,,,,,函数的表达式为;(2)由题意,水深,即,,,,,1,,或,;所以,该船在至或至能安全进港21、(1)(2),【解析】(1)先求得,然后对除以,再分子分母同时除以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论