四川省甘孜市2026届高二数学第一学期期末学业水平测试模拟试题含解析_第1页
四川省甘孜市2026届高二数学第一学期期末学业水平测试模拟试题含解析_第2页
四川省甘孜市2026届高二数学第一学期期末学业水平测试模拟试题含解析_第3页
四川省甘孜市2026届高二数学第一学期期末学业水平测试模拟试题含解析_第4页
四川省甘孜市2026届高二数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省甘孜市2026届高二数学第一学期期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.二次方程的两根为2,,那么关于的不等式的解集为()A.或 B.或C. D.2.已知递增等比数列的前n项和为,,且,则与的关系是()A. B.C. D.3.已知,则下列说法错误的是()A.若,分别是直线,的方向向量,则直线,所成的角的余弦值是B.若,分别是直线l的方向向量与平面的法向量,则直线l与平面所成的角的正弦值是C.若,分别是平面,的法向量,则平面,所成的角的余弦值是D.若,分别是直线l的方向向量与平面的法向量,则直线l与平面所成的角的正弦值是4.4位同学报名参加四个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.24种 B.81种C.64种 D.256种5.已知F为椭圆C:=1(a>b>0)右焦点,O为坐标原点,P为椭圆C上一点,若|OP|=|OF|,∠POF=120°,则椭圆C的离心率为()A. B.C.-1 D.-16.如图,正三棱柱中,,则与平面所成角的正弦值等于()A. B.C. D.7.已知数列满足,,则()A. B.C. D.8.在直三棱柱中,底面是等腰直角三角形,,点在棱上,且,则与平面所成角的正弦值为()A. B.C. D.9.某地为应对极端天气抢险救灾,需调用A,B两种卡车,其中A型卡车x辆,B型卡车y辆,以备不时之需,若x和y满足约束条件则最多需调用卡车的数量为()A.7 B.9C.13 D.1410.已知函数的图象在点处的切线与直线垂直,则()A. B.C. D.11.已知直线和圆相交于两点.若,则的值为()A. B.C. D.12.某研究所为了研究近几年中国留学生回国人数的情况,对2014至2018年留学生回国人数进行了统计,数据如下表:年份20142015201620172018年份代码12345留学生回国人数/万36.540.943.348.151.9根据上述统计数据求得留学生回国人数(单位:万)与年份代码满足的线性回归方程为,利用回归方程预测年留学生回国人数为()A.63.14万 B.64.72万C.66.81万 D.66.94万二、填空题:本题共4小题,每小题5分,共20分。13.将车行的30辆大巴车编号为01,02,…,30,采用系统抽样方法抽取一个容量为3的样本,且在某组随机抽得的一个号码为08,则剩下的两个号码依次是__________(按号码从小到大排列)14.已知函数定义域为,值域为,则______15.在单位正方体中,点E为AD的中点,过点B,E,的平面截该正方体所得的截面面积为______.16.已知直线,,若,则实数______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知动点M到点F(0,)的距离与它到直线的距离相等(1)求动点M的轨迹C的方程;(2)过点P(,-1)作C的两条切线PA,PB,切点分别为A,B,求直线AB的方程18.(12分)在平面直角坐标系中,已知直线(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的直角坐标为,直线与曲线的交点为,求的值.19.(12分)已知复数,其中i是虚数单位,m为实数(1)当复数z为纯虚数时,求m的值;(2)当复数在复平面内对应的点位于第三象限时,求m的取值范围20.(12分)已知正三棱柱底面边长为,是上一点,是以为直角顶点的等腰直角三角形,(1)证明:是的中点;(2)求二面角的大小21.(12分)设等差数列的前项和为,已知.(1)求数列的通项公式;(2)当为何值时,最大,并求的最大值.22.(10分)已知圆的圆心在直线上,且经过点和.(1)求圆的标准方程;(2)若过点且斜率存在的直线与圆交于,两点,且,求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据,确定二次函数的图象开口方向,再由二次方程的两根为2,,写出不等式的解集.【详解】因为二次方程的两根为2,,又二次函数的图象开口向上,所以不等式的解集为或,故选:B2、D【解析】设等比数列的公比为,由已知列式求得,再由等比数列的通项公式与前项和求解.【详解】设等比数列的公比为,由,得,所以,又,所以,所以,,所以即故选:D3、D【解析】利用空间角的意义结合空间向量求空间角的方法逐一分析各选项即可判断作答.【详解】对于A,因分别是直线的方向向量,且,直线所成的角为,则,A正确;对于B,D,因分别是直线l的方向向量与平面的法向量,且,直线l与平面所成的角为,则有,B正确,D错误;对于C,因分别是平面的法向量,且,平面所成的角为,则不大于,,C正确.故选:D4、D【解析】利用分步乘法计数原理进行计算.【详解】每位同学均有四种选择,故不同的报名方法有种.故选:D5、D【解析】记椭圆的左焦点为,在中,通过余弦定理得出,,根据椭圆的定义可得,进而可得结果.【详解】记椭圆的左焦点为,在中,可得,在中,可得,故,故,故选:D.6、C【解析】取中点,连接,,证明平面,从而可得为与平面所成角,再利用三角函数计算的正弦值.【详解】取中点,连接,,在正三棱柱中,底面是正三角形,∴,又∵底面,∴,又,∴平面,∴为与平面所成角,由题意,,,在中,.故选:C7、A【解析】根据递推关系依次求出即可.【详解】,,,,,.故选:A.8、C【解析】取AC的中点M,过点M作,且使得,进而证明平面,然后判断出是与平面所成的角,最后求出答案.【详解】如图,取AC的中点M,因为,则,过点M作,且使得,则四边形BDNM是平行四边形,所以.由题意,平面ABC,则平面ABC,而平面ABC,所以,又,所以平面,而所以平面,连接DA,NA,则是与平面所成的角.而,于是,.故选:.9、B【解析】画出约束条件的可行域,利用目标函数的几何意义即可求解【详解】设调用卡车的数量为z,则,其中x和y满足约束条件,作出可行域如图所示:当目标函数经过时,纵截距最大,最大.故选:B10、C【解析】对函数求导,利用导数的几何意义结合垂直关系计算作答.【详解】函数定义域为,求导得,于是得函数的图象在点处切线的斜率,而直线的斜率为,依题意,,即,解得,所以.故选:C11、C【解析】求出圆心到直线的距离,再利用,化简求值,即可得到答案.【详解】圆的圆心为,圆心到直线的距离公式为,故故选:C.12、D【解析】先求出样本点的中心,代入线性回归方程即可求出,再将代入线性回归方程即可得到结果【详解】由题意知:,,所以样本点的中心为,所以,解得:,可得线性回归方程为,年对应的年份代码为,令,则,所以预测2022年留学生回国人数为66.94万,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、18,28【解析】根据等距抽样的性质确定剩下的两个号码即可.【详解】由于从30辆大巴车中抽取3辆车,故分组间距为10,又第一组的号码为08,所以其它两个号码依次是18,28故答案为:18,28.14、3【解析】根据定义域和值域,结合余弦函数的图像与性质即可求得的值,进而得解.【详解】因为,由余弦函数的图像与性质可得,则,由值域为可得,所以,故答案为:3.【点睛】本题考查了余弦函数图像与性质的简单应用,属于基础题.15、【解析】根据题意,取的中点,连接、、、,分析可得四边形为平行四边形,则要求的截面就是四边形,进而可得为菱形,连接、,求出、的长,计算可得答案【详解】根据题意,取的中点,连接、、、,易得,,则四边形为平行四边形,过点,,的截面就是,又由正方体为单位正方体,则,则为菱形,连接、,易得,,则,即要求截面的面积为,故答案为:16、【解析】由直线垂直可得到关于实数a的方程,解方程即可.【详解】由直线垂直可得:,解得:.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据抛物线的定义或者直接列式化简即可求出;(2)方法一:设切线的方程为:,与抛物线方程联立,由即可求出的值,从而得出点的坐标,即可求出直线方程【小问1详解】设M(x,y),则解得.所以该抛物线的方程为【小问2详解】[方法一]:依题意,切线的斜率存在,设切线的方程为:,与抛物线方程联立,得,令,得或.从而或,解得或,所以切点A(-1,),B(2,2),直线AB的斜率为,所以直线AB的方程为,整理得.[方法二]:由可得,所以,设切点为(),则切线的斜率,又切线过点P(,-1),所以,整理得,解得或,所以切点的坐标为A(-1,),B(2,2),所以直线AB的斜率为,所以直线AB的方程为,整理得18、(1);(2)3.【解析】(1)把展开得,两边同乘得,再代极坐标公式得曲线的直角坐标方程.(2)将代入曲线C的直角坐标方程得,再利用直线参数方程t的几何意义和韦达定理求解.【详解】(1)把展开得,两边同乘得①将代入①,即得曲线的直角坐标方程为②(2)将代入②式,得,点M的直角坐标为(0,3),设这个方程的两个实数根分别为t1,t2,则∴t1<0,t2<0则由参数t的几何意义即得.【点睛】本题主要考查极坐标和直角坐标的互化、直线参数方程t的几何意义,属于基础题.19、(1)4(2)【解析】(1)根据纯虚数,实部为零,虚部不为零列式即可;(2)根据第三象限,实部小于零,虚部小于零,列式即可.【小问1详解】因为为纯虚数,所以解得或,且且综上可得,当为纯虚数时;【小问2详解】因为在复平面内对应的点位于第三象限,解得或,且即,故的取值范围为.20、(1)证明见解析;(2).【解析】(1)根据正棱柱的性质,结合线面垂直的判定定理、直角三角形的性质、正三角形的性质进行证明即可;(2)根据线面垂直的判定定理和性质,结合二面角的定义进行求解即可.【小问1详解】证明:在正三棱柱中,平面,平面,则,又是以为直角顶点的等腰直角三角形,则,且,平面,故平面,而平面,所以,又为正三角形,所以为的中点;【小问2详解】在正中,取的中点为,则,又平面,则,且,平面,故平面,取的中点为,且的中点为,则,故平面,而平面,所以,在等腰直角中,取的中点为,则,,平面,所以平面,而平面,所以,故为二面角平面角,又,则,,所以在中,,即:,故二面角的大小为.:21、(1)(2)n为6或7;126【解析】(1)设等差数列的公差为d,利用等差数列的通项公式求解;(2)由,利用二次函数的性质求解.【小问1详解】解:设等差数列的公差为d,因为.所以,解得,所以;【小问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论