版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市昌平区实验中学2026届高一上数学期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设全集,集合,,则=()A. B.{2,5}C.{2,4} D.{4,6}2.设是两条不同的直线,是两个不同的平面,且,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则3.下列函数中,最小正周期为π2A.y=cosxC.y=cos2x4.已知函数,则函数()A.有最小值 B.有最大值C.有最大值 D.没有最值5.函数的零点所在区间是()A B.C. D.6.下列函数中,满足对定义域内任意实数,恒有的函数的个数为()①②③④A.1个 B.2个C.3个 D.4个7.函数的部分图象如图所示,将函数的图象向左平移个单位长度后得到的图象,则下列说法正确的是()A.函数为奇函数B.函数的最小正周期为C.函数的图象的对称轴为直线D.函数的单调递增区间为8.函数的图象可由函数的图像()A.向左平移个单位得到 B.向右平移个单位得到C.向左平移个单位得到 D.向右平移个单位得到9.半径为,圆心角为弧度的扇形的面积为()A. B.C. D.10.若,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.茎叶图表示的是甲,乙两人在5次综合测评中的成绩,记甲,乙的平均成绩分别为a,b,则a,b的大小关系是______12.已知指数函数(且)在区间上的最大值是最小值的2倍,则______13.已知在同一平面内,为锐角,则实数组成的集合为_________14.若点在角终边上,则的值为_____15.已知一组样本数据5、6、a、6、8的极差为5,若,则其方差为________.16.已知,则的值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象两相邻对称轴之间的距离是,若将的图象先向右平移个单位长度,再向上平移2个单位长度后,所得图象关于轴对称且经过坐标原点.(1)求的解析式;(2)若对任意,恒成立,求实数的取值范围.18.脱贫是政府关注民生的重要任务,了解居民的实际收入状况就显得尤为重要.现从某地区随机抽取个农户,考察每个农户的年收入与年积蓄的情况进行分析,设第个农户的年收入(万元),年积蓄(万元),经过数据处理得(Ⅰ)已知家庭的年结余对年收入具有线性相关关系,求线性回归方程;(Ⅱ)若该地区的农户年积蓄在万以上,即称该农户已达小康生活,请预测农户达到小康生活的最低年收入应为多少万元?附:在中,其中为样本平均值.19.已知(1)若a=2,求(2)已知全集,若,求实数a的取值范围20.已知向量、、是同一平面内的三个向量,且.(1)若,且,求;(2)若,且与互相垂直,求.21.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由补集、交集的定义,运算即可得解.【详解】因为,,所以,又,所以.故选:D.2、D【解析】若,则需使得平面内有直线平行于直线;若,则需使得,由此为依据进行判断即可【详解】当时,可确定平面,当时,因为,所以,所以;当平面交平面于直线时,因为,所以,则,因为,所以,因为,所以,故A错误,D正确;当时,需使得,选项B、C中均缺少判断条件,故B、C错误;故选:D【点睛】本题考查空间中直线、平面的平行关系与垂直关系的判定,考查空间想象能力3、D【解析】利用三角函数的周期性求解.【详解】A.y=cosx周期为T=2πB.y=tanx的周期为C.y=cos2x的周期为D.y=tan2x的周期为故选:D4、B【解析】换元法后用基本不等式进行求解.【详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B5、C【解析】利用零点存在定理可得出结论.【详解】函数在上单调递增,因为,,,,所以,函数的零点所在区间是.故选:C.6、A【解析】根据因为函数满足对定义域内任意实数,恒有,可得函数的图象是“下凸”,然后由函数图象判断.【详解】因为函数满足对定义域内任意实数,恒有,所以函数的图象是“下凸”,分别作出函数①②③④的图象,由图象知,满足条件的函数有③一个,故选:A7、D【解析】根据图象得到函数解析式,将函数的图象向左平移个单位长度后得到的图象,可得解析式,分别根据正弦函数的奇偶性、单调性、周期性与对称性,对选项中的结论判断,从而可得结论.【详解】由图象可知,,∴,则.将点的坐标代入中,整理得,∴,即;,∴,∴.∵将函数的图象向左平移个单位长度后得到的图象,∴.,∴既不是奇函数也不是偶函数,故A错误;∴的最小正周期,故B不正确.令,解得,则函数图像的对称轴为直线.故C错误;由,可得,∴函数的单调递增区间为.故D正确;故选:D.【点睛】关键点睛:本题主要考查三角函数的图象与性质,熟记正弦函数的奇偶性、单调区间、最小正周期与对称轴是解决本题的关键.8、D【解析】异名函数图像的平移先化同名,然后再根据“左加右减,上加下减”法则进行平移.【详解】变换到,需要向右平移个单位.故选:D【点睛】函数图像平移异名化同名的公式:,.9、A【解析】由扇形面积公式计算【详解】由题意,故选:A10、D【解析】利用同角三角函数的基本关系,二倍角的余弦公式把要求的式子化为,把已知条件代入运算,求得结果.【详解】,,故选D.【点睛】本题主要考查同角三角函数的基本关系,二倍角的余弦公式的应用,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分别计算出甲,乙的平均分,从而可比较a,b的大小关系.【详解】易知甲的平均分为,乙的平均分为,所以.故答案为:.12、或2【解析】先讨论范围确定的单调性,再分别进行求解.【详解】①当时,,得;②当时,,得,故或2故答案为:或2.13、【解析】分析:根据夹角为锐角得向量数量积大于零且向量不共线,解得实数组成的集合.详解:因为为锐角,所以且不共线,所以因此实数组成的集合为,点睛:向量夹角为锐角的充要条件为向量数量积大于零且向量不共线,向量夹角为钝角的充要条件为向量数量积小于零且向量不共线.14、5【解析】由三角函数定义得15、2【解析】根据极差的定义可求得a的值,再根据方差公式可求得结果.【详解】因为该组数据的极差为5,,所以,解得.因为,所以该组数据的方差为故答案为:.16、【解析】答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据周期计算,,时满足条件,即,过原点得到,得到答案.(2)设,,根据函数最值得到,计算得到答案.【详解】(1),,故.向右平移个单位长度,再向上平移2个单位长度得到y=.即,故,即,时满足条件,即,,故.故(2),故,故,.设,即恒成立.即的最大值小于等于零即可.故满足:,即,解得【点睛】本题考查了三角函数解析式,函数恒成立问题,将恒成立问题转化为最值问题是解题的关键.18、(Ⅰ);(Ⅱ)万元.【解析】(Ⅰ)利用题中所给数据和最小二乘法求出相关系数,进而求出线性回归方程;(Ⅱ)利用线性回归方程进行预测.试题解析:(Ⅰ)由题意知所以线性回归方程为(Ⅱ)令得由此可预测该农户的年收入最低为万元.19、(1);(2).【解析】(1)根据解绝对值不等式的方法,结合二次根式的性质、集合交集的定义进行求解即可;(2)根据解绝对值不等式的方法、集合补集的定义,结合子集的性质进行求解即可.【小问1详解】当a=2时,因为,,所以;【小问2详解】,因为,所以,因此有或,解得或,因此实数a的取值范围为.20、(1)或(2),【解析】(1)先设,根据题意有求解.(2)根据,,得,,然后根据与互相垂直求解.【详解】(1)设,依题意得,解得或,即或.(2)因为,,因为与互相垂直,所以,即,所以,,解得或.【点睛】本题主要考查平面向量的向量表示和运算,还考查了运算求解的能力,属于中档题.21、乙商场中奖的可能性大.【解析】分别计算两种方案中奖的概率.先记出事件,得到试验发生包含的所有事件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮部后厨各操作区域卫生管理制度
- 2026年消防安全管理制度与火灾应急预案范文
- 金融公司档案管理制度
- 血糖管理及监测技术
- 2026年大数据分析技术及其应用综合练习题
- 2026年翻译行业职业水平测试题目集
- 高中生借助历史GIS技术探讨新航路开辟中的航海技术优势课题报告教学研究课题报告
- 工业CT检测五年应用:2025年轨道交通轴承检测行业报告
- 2026吉林白城市大安市公安局招聘警务辅助人员50人备考题库(含答案详解)
- 2026中国科学院合肥肿瘤医院血液透析中心医护人员招聘7人备考题库(安徽)及完整答案详解1套
- 2024年国家电网招聘之电工类考试题库(突破训练)
- 中建公司建筑机电设备安装工程标准化施工手册
- 心脏科医生在心血管疾病治疗及介入手术方面的总结
- 建设单位项目安全生产方案(2篇)
- 畜牧业动物疫病防控手册
- 年度采购合同框架协议
- JT-T-325-2018营运客运类型划分及等级评定
- 地球物理勘探与军事勘察技术研究
- DL-T5440-2020重覆冰架空输电线路设计技术规程
- 2069-3-3101-002WKB产品判定准则-外发
- 商场商户安全培训
评论
0/150
提交评论