2026届重庆育才中学高二上数学期末调研试题含解析_第1页
2026届重庆育才中学高二上数学期末调研试题含解析_第2页
2026届重庆育才中学高二上数学期末调研试题含解析_第3页
2026届重庆育才中学高二上数学期末调研试题含解析_第4页
2026届重庆育才中学高二上数学期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届重庆育才中学高二上数学期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,“命题”是“命题”的()A.充分且不必要条件 B.必要且不充分条件C.充要条件 D.既不充分也不必要条件2.已知双曲线C:的渐近线方程是,则m=()A.3 B.6C.9 D.3.设是定义在R上的函数,其导函数为,满足,若,则()A. B.C. D.a,b的大小无法判断4.已知直线,,若,则实数等于()A.0 B.1C. D.1或5.若函数在区间上单调递增,则实数的取值范围是()A. B.C. D.6.如图,在三棱锥中,平面ABC,,,,则点A到平面PBC的距离为()A.1 B.C. D.7.东汉末年的数学家赵爽在《周髀算经》中利用一副“弦图”,根据面积关系给出了勾股定理的证明,后人称其为“赵爽弦图”.如图1,它由四个全等的直角三角形与一个小正方形拼成的一个大正方形.我们通过类比得到图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形.对于图2.下列结论正确的是()①这三个全等的钝角三角形不可能是等腰三角形;②若,,则;③若,则;④若是的中点,则三角形的面积是三角形面积的7倍.A.①②④ B.①②③C.②③④ D.①③④8.已知函数,要使函数有三个零点,则的取值范围是()A. B.C. D.9.函数的定义域为,,对任意,,则的解集为()A. B.C. D.10.已知函数,则的单调递增区间为().A. B.C. D.11.是椭圆的焦点,点在椭圆上,点到的距离为1,则到的距离为()A.3 B.4C.5 D.612.已知五个数据3,4,x,6,7的平均数是x,则该样本标准差为()A.1 B.C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.数列满足,则__________.14.已知平面,过空间一定点P作一直线l,使得直线l与平面,所成的角都是30°,则这样的直线l有______条15.命题“,”为假命题,则实数a的取值范围是______16.已知过点作抛物线的两条切线,切点分别为A、B,直线经过抛物线C的焦点F,则___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线:,直线过定点.(1)若与仅有一个公共点,求直线的方程;(2)若与交于A,B两点,直线OA,OB(其中О为坐标原点)的斜率分别为,,试探究在,,,中,运算结果是否有为定值的?并说明理由.18.(12分)已知圆的方程为:.(1)求的值,使圆的周长最小;(2)过作直线,使与满足(1)中条件的圆相切,求的方程,并求切线段的长.19.(12分)设等差数列的前项和为,已知.(1)求数列的通项公式;(2)当为何值时,最大,并求的最大值.20.(12分)2021年2月12日,辛丑牛年大年初一,由贾玲导演的电影《你好,李焕英》上映,截至到2月21日22点8分,票房攀升至40.25亿,反超同期上映的《唐人街探案3》,迎来了2021春节档最具戏剧性的一幕.正是因为影片中母女间的这份简单、纯粹、诚挚的情感触碰了人们内心柔软的地方,打动了万千观众,才赢得了良好的口碑,不少观众都流下了感动的泪水.影片结束后,某电影院工作人员当日随机抽查了100名观看《你好,焕英》的观众,询问他们在观看影片的过程中是否“流泪”,得到以下表格:男性观众女性观众合计流泪20没有流泪520合计(1)完成表格中的数据,并判断是否有99.9%的把握认为观众在观看影片的过程中流泪与性别有关?(2)以分层抽样的方式,从流泪与没有流泪的观众中抽取5人,然后从这5人中再随机抽取2人,求这2人都流泪的概率附:0.1000.0500.0100.0012.7063.8416.63510.828,21.(12分)现将两个班的艺术类考生报名表分别装进2个档案袋,第一个档案袋内有6名男生和4名女生的报名表,第二个档案袋内有5名男生和5名女生的报名表.随机选择一个档案袋,然后从中随机抽取2份报名表(1)若选择的是第一个档案袋,求从中抽到两名男生报名表的概率;(2)求抽取的报名表是一名男生一名女生的概率22.(10分)在中,内角的对边分别是,且(1)求角的大小(2)若,且,求的面积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据充分、必要条件的概念理解,可得结果.【详解】由,则或所以“”可推出“或”但“或”不能推出“”故命题是命题充分且不必要条件故选:A【点睛】本题主要考查充分、必要条件的概念理解,属基础题.2、C【解析】根据双曲线的渐近线求得的值.【详解】依题意可知,双曲线的渐近线为,所以.故选:C3、A【解析】首先构造函数,再利用导数判断函数的单调性,即可判断选项.【详解】设,,所以函数在单调递增,即,所以,那么,即.故选:A4、C【解析】由题意可得,则由得,从而可求出的值【详解】由题意可得,因为,,,所以,解得,故选:C5、A【解析】由函数在上单调递增,可得,从而可求出实数的取值范围【详解】由,得,因为函数在区间上单调递增,所以在区间上恒成立,即恒成立,因为,所以,所以,所以实数的取值范围为,故选:A6、A【解析】设点A到平面PBC的距离为,根据等体积法求解即可.【详解】因为平面ABC,所以,因为,,所以又,,所以,所以,设点A到平面PBC的距离为,则,即,,故选:A7、A【解析】对于①,由三角形大边对大角的性质分析,对于②,根据题意利用正弦定理分析,对于③,利用余弦定理分析,对于④,利用三角形的面积公式分析判断【详解】对于①,根据题意,图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形,故,,所以这三个全等的钝角三角形不可能是等腰三角形,故①正确;对于②,由题知,在中,,,,所以,所以由正弦定理得解得,因为,所以,故②正确;对于③,不妨设,所以在中,由余弦定理得,代入数据得,所以,所以,故③错误;对于④,若是的中点,则,所以,故④正确.故选:A第II卷(非选择题8、A【解析】要使函数有三个解,则与图象有三个交点,数形结合即可求解.【详解】要使函数有三个解,则与图象有三个交点,因为当时,,所以,可得在上递减,在递增,所以,有最小值,且时,,当趋向于负无穷时,趋向于0,但始终小于0,当时,单调递减,由图像可知:所以要使函数有三个零点,则.故选:A9、B【解析】构造函数,利用导数判断出函数在上的单调性,将不等式转化为,利用函数的单调性即可求解.【详解】依题意可设,所以.所以函数在上单调递增,又因为.所以要使,即,只需要,故选B.【点睛】本题考查利用函数的单调性解不等式,解题的关键就是利用导数不等式的结构构造新函数来解,考查分析问题和解决问题的能力,属于中等题.10、D【解析】利用导数分析函数单调性【详解】的定义域为,,令,解得故的单调递增区间为故选:D11、C【解析】利用椭圆的定义直接求解【详解】由题意得,得,因为,,所以,故选:C12、B【解析】先求出的值,然后利用标准差公式求解即可【详解】解:因为五个数据3,4,x,6,7的平均数是x,所以,解得,所以标准差,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对递推关系多递推一次,再相减,可得,再验证是否满足;【详解】∵①时,②①-②得,时,满足上式,.故答案为:.【点睛】数列中碰到递推关系问题,经常利用多递推一次再相减的思想方法求解.14、4【解析】设平面,在平面内作于点O,在平面内过点O作,设OM是的角平分线,过棱m上一点P作,则过点O在平面OMQP上存在2条直线l,使得直线l与OB、OA成,直线l与平面且与平面,所成的角都是30°,在的补角一侧也存在2条满足条件的直线l,由此可得答案.【详解】解:设平面,在平面内作于点O,在平面内过点O作,因为平面,所以,设OM是的角平分线,则,过棱m上一点P作,则过点O在平面OMQP上存在2条直线l,使得直线l与OB、OA成,此时直线l与平面且与平面,所成的角都是30°,同理,在的补角一侧也存在2条满足条件的直线l,所以这样的直线l有4条,故答案为:4.15、【解析】写出原命题的否定,再利用二次型不等式恒成立求解作答.【详解】因命题“,”为假命题,则命题“,”为真命题,当时,恒成立,则,当时,必有,解得,所以实数a的取值范围是.故答案为:16、64【解析】用字母进行一般化研究,先求出切点弦方程,再联立化简,最后代入数据计算【详解】设,点处的切线方程为联立,得由,得即,解得所以点处的切线方程为,整理得同理,点处的切线方程为设为两切线的交点,则所以在直线上即直线AB的方程为又直线AB经过焦点所以,即联立得所以所以本题中所以故答案为:64【点睛】结论点睛:过点作抛物线的两条切线,切点弦的方程为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或或(2)为定值,而,,均不为定值【解析】(1)过抛物线外一定点的直线恰好与该抛物线只有一个交点,则分两类分别讨论,一是直线与抛物线的对称轴平行,二是直线与抛物线相切;(2)联立直线的方程与抛物线的方程,根据韦达定理,分别表示出,,,为直线斜率的形式,便可得出结果.【小问1详解】过点的直线与抛物线仅有一个公共点,则该直线可能与抛物线的对称轴平行,也可能与抛物线相切,下面分两种情况讨论:当直线可能与抛物线的对称轴平行时,则有:当直线与抛物线相切时,由于点在轴上方,且在抛物线外,则存在两条直线与抛物线相切:易知:是其中一条直线另一条直线与抛物线上方相切时,不妨设直线的斜率为,则有:联立直线与抛物线可得:可得:则有:解得:故此时的直线的方程为:综上,直线的方程为:或或【小问2详解】若与交于A,B两点,分别设其坐标为,,且由(1)可知直线要与抛物线有两个交点,则直线的斜率存在且不为,不妨设直线的斜率为,则有:联立直线与抛物线可得:可得:,即有:根据韦达定理可得:,则有:,下面分别说明各项是否为定值:,故运算结果为定值;,故运算结果不为定值;,故运算结果不为定值;,故运算结果不为定值.综上,可得:为定值,而,,均不为定值18、(1)(2)直线方程为或,切线段长度为4【解析】(1)先求圆的标准方程,由半径最小则周长最小;(2)由,则圆的方程为:,直线和圆相切则圆心到直线的距离等于半径,分直线与轴垂直和直线与轴不垂直两种情况进行讨论即可得解.进一步,利用圆的几何性质可求解切线的长度.【小问1详解】,配方得:,当时,圆的半径有最小值2,此时圆的周长最小.【小问2详解】由(1)得,,圆的方程为:.当直线与轴垂直时,,此时直线与圆相切,符合条件;当直线与轴不垂直时,设为,由直线与圆相切得:,解得,所以切线方程为,即.综上,直线方程为或.圆心与点的距离,则切线长度为.19、(1)(2)n为6或7;126【解析】(1)设等差数列的公差为d,利用等差数列的通项公式求解;(2)由,利用二次函数的性质求解.【小问1详解】解:设等差数列的公差为d,因为.所以,解得,所以;【小问2详解】,当或7时,最大,的最大值是126.20、(1)填表见解析;有99.9%的把握认为观众在观看影片的过程中流泪与性别有关;(2)【解析】(1)由已知数据可完善列联表,然后计算可得结论;(2)根据分层抽样定义求出5人中流泪与没有流泪的观众人数并编号,用列举法写出作任取2人的所有基本事件,并得出2人都流泪的基本事件,计数后可计算概率【详解】解:(1)男性观众女性观众合计流泪206080没有流泪15520合计3565100所以有99.9%的把握认为观众在观看影片的过程中流泪与性别有关(2)以分层抽样的方式,从流泪与没有流泪的观众中抽取5人,则流泪的观众抽到人,记为,,,,没有流泪的观众抽到人,记为从这5人中抽2人有10种情况,分别是,,,,,,,,,其中这2人都流泪有6种情况,分别是,,,,,所以所求概率21、(1);(2).【解析】(1)选择的是第一个档案袋,从中随机抽取2份报名表,基本事件总数,从中抽到两名男生报名表包含的基本事件个数为,由此能求出从中抽到两名男生报名表的概率;(2)设事件表示抽取到第个档案袋,,设事件表示抽取的报名表是一名男生一名女生,利用全概率公式能求出抽取的报名表是一名男生一名女生的概率【小问1详解】(1)第一个档案袋内有6名男生和4名女生的报名表,选择的是第一个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论