版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西贺州市桂梧高中2026届数学高二上期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3C. D.22.甲、乙两名同学同时从教室出发去体育馆打球(路程相等),甲一半时间步行,一半时间跑步;乙一半路程步行,一半路程跑步.如果两人步行速度、跑步速度均相等,则()A.甲先到体育馆 B.乙先到体育馆C.两人同时到体育馆 D.不确定谁先到体育馆3.《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵中,M是的中点,,,,若,则()A. B.C. D.4.已知过点的直线l与圆相交于A,B两点,则的取值范围是()A. B.C. D.5.已知集合,,则()A. B.C. D.6.已知矩形,为平面外一点,且平面,,分别为,上的点,且,,,则()A. B.C.1 D.7.已知直线l和抛物线交于A,B两点,O为坐标原点,且,交AB于点D,点D的坐标为,则p的值为()A. B.1C. D.28.若数列满足,则()A. B.C. D.9.已知过点的直线与圆相切,且与直线平行,则()A.2 B.1C. D.10.函数的单调递减区间为()A. B.C. D.11.已知等差数列的前项和为,,,,则的值为()A. B.C. D.12.已知向量,,且与互相垂直,则k的值是().A.1 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点是抛物线的准线与x轴的交点,F为抛物线的焦点,P是抛物线上的动点,则最小值为_____14.若某几何体的三视图如图所示,则该几何体的体积是__________15.高二某位同学参加物理、政治科目的学考,已知这位同学在物理、政治科目考试中得A的概率分别为、,这两门科目考试成绩的结果互不影响,则这位考生至少得1个A的概率为______16.若函数的递增区间是,则实数______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面,底面是边长为2的正方形,,F,G分别是,的中点(1)求证:平面;(2)求平面与平面的夹角的大小18.(12分)设函数(Ⅰ)求的单调区间;(Ⅱ)若,为整数,且当时,恒成立,求的最大值.(其中为的导函数.)19.(12分)已知点,圆,点Q在圆上运动,的垂直平分线交于点P.(1)求动点P的轨迹的方程;(2)过点的动直线l交曲线C于A、B两点,在y轴上是否存在定点T,使以AB为直径的圆恒过这个点?若存在,求出点T的坐标,若不存在,请说明理由.20.(12分)已知圆C过点,,它与x轴的交点为,,与y轴的交点为,,且.(1)求圆C的标准方程;(2)若,直线,从点A发出的一条光线经直线l反射后与圆C有交点,求反射光线所在的直线的斜率的取值范围.21.(12分)在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求直线与所成角的余弦值.22.(10分)已知数列{an}为等差数列,且a1+a5=-12,a4+a8=0.(1)求数列{an}的通项公式;(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求数列{bn}的通项公式
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线定义,考查数形结合的数学思想方法,属于基础题.2、A【解析】设出总路程与步行速度、跑步速度,表示出两人所花时间后比较不等式大小【详解】设总路程为,步行速度,跑步速度对于甲:,得对于乙:,当且仅当时等号成立,而,故,乙花时间多,甲先到体育馆故选:A3、C【解析】建立坐标系,坐标表示向量,求出点坐标,进而求出结果.【详解】以为坐标原点,,,的方向分别为x,y,z轴的正方向建立空间直角坐标系.不妨令,则,,,,,.因为,所以,则,,,,则解得,,,故.故选:C4、D【解析】经判断点在圆内,与半径相连,所以与垂直时弦长最短,最长为直径【详解】将代入圆方程得:,所以点在圆内,连接,当时,弦长最短,,所以弦长,当过圆心时,最长等于直径8,所以的取值范围是故选:D5、B【解析】根据根式、分式的性质求定义域可得集合A,解一元二次不等式求集合B,再由集合的交运算求.【详解】∵,,∴故选:B6、B【解析】由,,得,然后利用向量的加减法法则把向量用向量表示出来,可求出的值,从而可得答案【详解】解:因为,,所以所以,因为,所以,所以,故选:B7、B【解析】由垂直关系得出直线l方程,联立直线和抛物线方程,利用韦达定理以及数量积公式得出p的值.【详解】,,即联立直线和抛物线方程得设,则解得故选:B8、C【解析】利用前项积与通项的关系可求得结果.【详解】由已知可得.故选:C.9、C【解析】先根据垂直关系设切线方程,再根据圆心到切线距离等于半径列式解得结果.【详解】因为切线与直线平行,所以切线方程可设为因为切线过点P(2,2),所以因为与圆相切,所以故选:C10、A【解析】先求定义域,再由导数小于零即可求得函数的单调递减区间.【详解】由得,所以函数的定义域为,又,因为,所以由得,解得,所以函数的单调递减区间为.故选:A.11、A【解析】由可求得,利用可构造方程求得.【详解】,,,,,解得:.故选:A.12、D【解析】利用向量的数量积为0可求的值.【详解】因与互相垂直,故,故即,故.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用已知条件求出p,设出P的坐标,然后求解的表达式,利用基本不等式即可得出结论【详解】解:由题意可知:,设点,P到直线的距离为d,则,所以,当且仅当x时,的最小值为,此时,故答案为:【点睛】本题考查抛物线的简单性质的应用,基本不等式的应用,属于中档题14、1【解析】根据三视图可得如图所示的几何体,从而可求其体积.【详解】据三视图分析知,该几何体为直三棱柱,且底面为直角边为1的等腰直角三角形,高为2,所以其体积故答案为:115、【解析】根据给定条件利用相互独立事件、对立事件的概率公式计算作答.【详解】依题意,这位考生至少得1个A对立事件为物理、政治科目考试都没有得A,其概率为,所以这位考生至少得1个A的概率为.故答案为:16、【解析】求得二次函数的单调增区间,即可求得参数的值.【详解】因为二次函数开口向上,对称轴为,故其单调增区间为,又由题可知:其递增区间是,故.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)取中点连接,连接,证得四边形为平行四边形,,再证面,即可得到证明结果;(2)建立空间坐标系,求面和面的法向量,即可得到两个面的二面角的余弦值,进而得到二面角大小.【小问1详解】如上图,取中点连接,连接,均为线段中点,且,又G是的中点,且且四边形为平行四边形为等腰直角三角形,为斜边中点,面,面面又面.【小问2详解】建立如图坐标系,设面的法向量为设面的法向量为两个法向量的夹角余弦值为:,由图知两个面的二面角为钝角,故夹角为.18、(Ⅰ)答案见解析;(Ⅱ).【解析】(Ⅰ)的定义域为,,分和两种情况解不等式和即可得单调递增区间和单调递减区间;(Ⅱ)由题意可得对于恒成立,分离可得,令,只需,利用导数求最小值即可求解.【详解】(Ⅰ)函数的定义域为,当时,对于恒成立,此时函数在上单调递增;当时,由可得;由可得;此时在上单调递减,在上单调递增;综上所述:当时,函数的单调递增区间为,当时,单调递减区间为,单调递增区间为,(Ⅱ)若,由可得,因为,所以,所以所以对于恒成立,令,则,,令,则对于恒成立,所以在单调递增,因为,,所以在上存在唯一零点,即,可得:,当时,,则,当时,,则,所以在上单调递减,在上单调递增,所以,因为,所以的最大值为.【点睛】方法点睛:利用导数研究函数单调性的方法:(1)确定函数的定义域;求导函数,由(或)解出相应的的范围,对应的区间为的增区间(或减区间);(2)确定函数的定义域;求导函数,解方程,利用的根将函数的定义域分为若干个子区间,在这些子区间上讨论的正负,由符号确定在子区间上的单调性.19、(1);(2)存在,T(0,1)﹒【解析】(1)根据椭圆的定义,结合即可求P的轨迹方程;(2)假设存在T(0,t),设AB方程为,联立直线方程和椭圆方程,代入=0即可求出定点T.【小问1详解】由题可知,,则,由椭圆定义知P的轨迹是以F1、为焦点,且长轴长为的椭圆,∴,∴,∴P的轨迹方程为C:;【小问2详解】假设存在T(0,t)满足题意,易得AB的斜率一定存在,否则不会存在T满足题意,设直线AB的方程为,联立,化为,易知恒成立,∴(*)由题可知,将(*)代入可得:即∴,解,∴在y轴上存在定点T(0,1),使以AB为直径的圆恒过这个点T.20、(1);(2).【解析】(1)设圆C的一般式方程为:,然后根据题意列出方程,解出D,E,F的值即可得到圆的方程;(2)先求出点关于直线l的对称点,设反射光线所在直线方程为,利用直线和圆的位置关系列出不等式解出k的取值范围即可.【详解】(1)设圆C的一般式方程为:,令,得,所以,令,得,所以,所以有,所以,①又圆C过点,,所以有,②,③由①②③得,,,所以圆C的一般式方程为,标准方程为;(2)设关于的对称点,所以有,解之得,故点,∴反射光线所在直线过点,设反射光线所在直线方程为:,所以有,所以反射光线所在的直线斜率取值范围为.【点睛】本题考查圆的方程的求法,直线和圆的位置关系的应用,考查逻辑思维能力和运算求解能力,属于常考题.21、(1)证明见解析;(2);【解析】(1)证明,利用面面垂直的性质可得出平面,再利用面面垂直的判定定理可证得平面平面;(2)连接,以点为坐标原点,、、所在直线分别为轴建立空间直角坐标系,设,根据可得出,求出的值,利用空间向量法可求得直线与所成角的余弦值.【详解】(1)为的中点,且,则,又因为,则,故四边形为平行四边形,因为,故四边形为矩形,所以,平面平面,平面平面,平面,平面,因为平面,因此,平面平面;(2)连接,由(1)可知,平面,,为的中点,则,以点为坐标原点,所在直线分别为轴建立空间直角坐标系,则、、、、,设,,因为,则,解得,,,则.因此,直线与所成角的余弦值为.22、(1)an=2n-12
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自贡2025年四川自贡市贡井区人民法院招聘聘用制人员3人笔试历年参考题库附带答案详解
- 深圳2025年广东深圳市光明区面向市内选调职员20人笔试历年参考题库附带答案详解
- 河源2025年广东河源连平县田源镇人民政府招聘编外人员笔试历年参考题库附带答案详解
- 楚雄2025年云南楚雄禄丰市紧密型医共体招聘编制外工作人员40人笔试历年参考题库附带答案详解
- 文山云南文山马关县紧密型县域医疗卫生共同体总医院马关县中医医院招聘笔试历年参考题库附带答案详解
- 徐州江苏徐州邳州市基层医疗卫生单位面向农村订单定向医学本科生招聘20人笔试历年参考题库附带答案详解
- 山西2025年山西省财政税务专科学校招聘19人笔试历年参考题库附带答案详解
- 宁波浙江宁波余姚市托育综合服务中心(市托育园)第二次编外招聘7人笔试历年参考题库附带答案详解
- 哈尔滨2025年黑龙江哈尔滨铁道职业技术学院招聘辅导员笔试历年参考题库附带答案详解
- 儋州2025年海南儋州市人民医院(儋州市人民医院医疗集团总院)招聘17人笔试历年参考题库附带答案详解
- 《筑牢安全防线 欢度平安寒假》2026年寒假安全教育主题班会课件
- 信息技术应用创新软件适配测评技术规范
- 养老院老人生活设施管理制度
- 2026年税务稽查岗位考试试题及稽查实操指引含答案
- (2025年)林业系统事业单位招聘考试《林业知识》真题库与答案
- 2026版安全隐患排查治理
- 道路施工安全管理课件
- 2026年七台河职业学院高职单招职业适应性考试备考题库有答案解析
- 肉瘤的课件教学课件
- 办公楼电梯间卫生管理方案
- 新生儿休克诊疗指南
评论
0/150
提交评论