北京市丰台区北京第十二中学2026届高一数学第二学期期末预测试题含解析_第1页
北京市丰台区北京第十二中学2026届高一数学第二学期期末预测试题含解析_第2页
北京市丰台区北京第十二中学2026届高一数学第二学期期末预测试题含解析_第3页
北京市丰台区北京第十二中学2026届高一数学第二学期期末预测试题含解析_第4页
北京市丰台区北京第十二中学2026届高一数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市丰台区北京第十二中学2026届高一数学第二学期期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的值为()A. B. C. D.2.等差数列满足,则其前10项之和为()A.-9 B.-15 C.15 D.3.如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.34 B.42 C.54 D.724.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少1名女生”与事件“全是男生”()A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件5.已知,则值为A. B. C. D.6.已知,则的值构成的集合为()A. B. C. D.7.已知,函数,存在常数,使得为偶函数,则可能的值为()A. B. C. D.8.设△ABC的内角A、B、C所对边分别为a、b、c,若a=3,b=,A=,则B=()A. B.或 C. D.或9.已知幂函数过点,令,,记数列的前项和为,则时,的值是()A.10 B.120 C.130 D.14010.过△ABC的重心任作一直线分别交边AB,AC于点D、E.若,,,则的最小值为()A.4 B.3 C.2 D.1二、填空题:本大题共6小题,每小题5分,共30分。11.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为_________.12.的值为__________.13.已知三棱锥的外接球的球心恰好是线段的中点,且,则三棱锥的体积为__________.14.若当时,不等式恒成立,则实数a的取值范围是_____.15.在矩形中,,现将矩形沿对角线折起,则所得三棱锥外接球的体积是________.16.若点,是圆C:上不同的两点,且,则的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形.(1)求的值及函数的值域;(2)若,且,求的值.18.本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列满足.(1)若,求的取值范围;(2)若是公比为等比数列,,求的取值范围;(3)若成等差数列,且,求正整数的最大值,以及取最大值时相应数列的公差.19.已知向量.(1)当时,求的值;(2)设函数,当时,求的值域.20.在中,A,B,C所对的边分别为,满足.(I)求角A的大小;(Ⅱ)若,D为BC的中点,且的值.21.已知圆过点和,且圆心在直线上.(Ⅰ)求圆的标准方程;(Ⅱ)求直线:被圆截得的弦长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据辅助角公式即可.【详解】由辅助角公式得所以,选C.【点睛】本题主要考查了辅助角公式的应用:,属于基础题.2、D【解析】由已知(a4+a7)2=9,所以a4+a7=±3,从而a1+a10=±3.所以S10=×10=±15.故选D.3、C【解析】

还原几何体得四棱锥E﹣ABCD,由图中数据利用椎体的体积公式求解即可.【详解】依三视图知该几何体为四棱锥E﹣ABCD,如图,ABCD是直角梯形,是棱长为6的正方体的一部分,梯形的面积为:12几何体的体积为:13故选:C.【点睛】本题考查三视图求几何体的体积,由三视图正确还原几何体和补形是解题的关键,考查空间想象能力.4、C【解析】至少1名女生的对立事件就是全是男生.因此事件“至少1名女生”与事件“全是男生”既是互斥事件,也是对立事件5、B【解析】

利用三角函数的诱导公式,得到,即可求解.【详解】由题意,可得,故选B.【点睛】本题主要考查了三角函数的诱导公式的化简、求值,其中解答中熟练应用三角函数的诱导公式是解答的关键,着重考查了推理与运算能力,属于基础题.6、B【解析】

根据的奇偶分类讨论.【详解】为偶数时,,为奇数时,设,则.∴的值构成的集合是.故选:B.【点睛】本题考查诱导公式,掌握诱导公式是解题基础.注意诱导公式的十字口诀:奇变偶不变,符号看象限.7、C【解析】

直接利用三角函数性质的应用和函数的奇偶性的应用求出结果.【详解】解:由函数,存在常数,使得为偶函数,则,由于函数为偶函数,故,所以,当时,.故选:C.【点睛】本题考查三角函数的性质的应用,属于基础题.8、A【解析】

由已知利用正弦定理可求的值,利用大边对大角可求为锐角,利用特殊角的三角函数值,即可得解.【详解】由题意知,由正弦定理,可得==,又因为,可得B为锐角,所以.故选A.【点睛】本题主要考查了正弦定理,大边对大角,特殊角的三角函数值在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.9、B【解析】

根据幂函数所过点求得幂函数解析式,由此求得的表达式,利用裂项求和法求得的表达式,解方程求得的值.【详解】设幂函数为,将代入得,所以.所以,所以,故,由解得,故选B.【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.10、B【解析】

利用重心以及向量的三点共线的结论得到的关系式,再利用基本不等式求最小值.【详解】设重心为,因为重心分中线的比为,则有,,则,又因为三点共线,所以,则,取等号时.故选B.【点睛】(1)三角形的重心是三条中线的交点,且重心分中线的比例为;(2)运用基本不等式时,注意取等号时条件是否成立.二、填空题:本大题共6小题,每小题5分,共30分。11、0.5【解析】

由互斥事件的概率加法求出射手在一次射击中超过8环的概率,再利用对立事件的概率求出不超过8环的概率即可.【详解】由题意,射中10环、9环、8环的概率分别为0.2、0.3、0.1,所以射手的一次射击中超过8环的概率为:0.2+0.3=0.5故射手的一次射击中不超过8环的概率为:1-0.5=0.5故答案为0.5【点睛】本题主要考查了对立事件的概率,属于基础题.12、【解析】

由反余弦可知,由此可计算出的值.【详解】.故答案为:.【点睛】本题考查正切值的计算,涉及反余弦的应用,求出反余弦值是关键,考查计算能力,属于基础题.13、【解析】

根据题意得出平面后,由计算可得答案.【详解】因为三棱锥的外接球的球心恰好是的中点,所以和都是直角三角形,又因为,所以,,又,则平面.因为,所以三角形为边长是的等边三角形,所以.故答案为:【点睛】本题考查了直线与平面垂直的判定,考查了三棱锥与球的组合,考查了三棱锥的体积公式,属于中档题.14、【解析】

用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值.【详解】设,是增函数,当时,,不等式化为,即,不等式在上恒成立,时,显然成立,,对上恒成立,由对勾函数性质知在是减函数,时,,∴,即.综上,.故答案为:.【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.15、【解析】

取的中点,连接,三棱锥外接球的半径再计算体积.【详解】如图,取的中点,连接.由题意可得,则所得三棱锥外接球的半径,其体积为.故答案为【点睛】本题考查了三棱锥的外切球体积,计算是解题的关键.16、【解析】

由,再结合坐标运算即可得解.【详解】解:因为点,是圆C:上不同的两点,则,,又所以,即,故答案为:.【点睛】本题考查了向量模的运算,重点考查了运算能力,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(2),函数的值域为;(2).【解析】

(1)将函数化简整理,根据正三角形的高为,可求出,进而可得其值域;(2)由得到,再由求出,进而可求出结果.【详解】(1)由已知可得,又正三角形的高为,则,所以函数的最小正周期,即,得,函数的值域为.(2)因为,由(1)得,即,由,得,即=,故.【点睛】本题主要考查三角函数的图象和性质,熟记正弦函数的性质即可求解,属于基础题型.18、(1);(2);(3)的最大值为1999,此时公差为.【解析】

(1)依题意:,又将已知代入求出x的范围;(2)先求出通项:,由求出,对q分类讨论求出Sn分别代入不等式Sn≤Sn+1≤3Sn,得到关于q的不等式组,解不等式组求出q的范围.(3)依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…ak的公差.【详解】(1)依题意:,∴;又∴3≤x≤27,综上可得:3≤x≤6(2)由已知得,,,∴,当q=1时,Sn=n,Sn≤Sn+1≤3Sn,即,成立.当1<q≤3时,,Sn≤Sn+1≤3Sn,即,∴不等式∵q>1,故3qn+1﹣qn﹣2=qn(3q﹣1)﹣2>2qn﹣2>0恒成立,而对于不等式qn+1﹣3qn+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又当1≤q≤2,q﹣3<0,∴qn+1﹣3qn+2=qn(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,当时,,Sn≤Sn+1≤3Sn,即,∴此不等式即,3q﹣1>0,q﹣3<0,3qn+1﹣qn﹣2=qn(3q﹣1)﹣2<2qn﹣2<0,qn+1﹣3qn+2=qn(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴时,不等式恒成立,∴q的取值范围为:.(3)设a1,a2,…ak的公差为d.由,且a1=1,得即当n=1时,d≤2;当n=2,3,…,k﹣1时,由,得d,所以d,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999所以k的最大值为1999,k=1999时,a1,a2,…ak的公差为.【点睛】本题考查等比数列的通项公式及前n项和的求法;考查不等式组的解法;找好分类讨论的起点是解决本题的关键,属于一道难题.19、(1)-7,(2)【解析】试题分析:(1)由向量共线得到等量关系,求出角的正切值,再利用两角差正切公式求解:(2)先根据向量数量积,利用二倍角公式及配角公式得到三角函数关系式,再从角出发研究基本三角函数范围:试题解析:(1),3分6分(2)8分11分,的值域为14分考点:向量平行坐标表示,三角函数性质20、(I);(II).【解析】

(I)得,求出.(Ⅱ)由题意可知,化简得,再结合余弦定理求出,再利用正弦定理求出的值.【详解】(I),所以,所以因为,所以,所以(Ⅱ)由题意可知:所以所以又因为,所以,因为,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论