版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省冠县武训高级中学2026届数学高一下期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设和分别表示函数的最大值和最小值,则等于()A. B. C. D.2.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=A. B. C.2 D.33.在数列中,若,,则()A. B. C. D.4.已知点G为的重心,若,,则=()A. B. C. D.5.为了研究某大型超市开业天数与销售额的情况,随机抽取了5天,其开业天数与每天的销售额的情况如表所示:开业天数1020304050销售额/天(万元)62758189根据上表提供的数据,求得关于的线性回归方程为,由于表中有一个数据模糊看不清,请你推断出该数据的值为()A.68 B.68.3 C.71 D.71.36.设,是定义在上的两个周期函数,的周期为,的周期为,且是奇函数.当时,,,其中.若在区间上,函数有个不同的零点,则的取值范围是()A. B. C. D.7.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了了解该地区中小学生的近视形成原因,按学段用分层抽样的方法抽取该地区的学生进行调查,则样本容量和抽取的初中生中近视人数分别为()A., B., C., D.,8.如图所示,已知正三棱柱的所有棱长均为1,则三棱锥的体积为()A. B. C. D.9.已知,其中,若函数在区间内有零点,则实数的取值可能是()A. B. C. D.10.式子的值为()A. B.0 C.1 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为锐角,则_______.12.若数列是正项数列,且,则_______.13.给出下列四个命题:①正切函数在定义域内是增函数;②若函数,则对任意的实数都有;③函数的最小正周期是;④与的图象相同.以上四个命题中正确的有_________(填写所有正确命题的序号)14.过点作圆的切线,则切线的方程为_____.15.已知向量为单位向量,向量,且,则向量的夹角为__________.16.向边长为的正方形内随机投粒豆子,其中粒豆子落在到正方形的顶点的距离不大于的区域内(图中阴影区域),由此可估计的近似值为______.(保留四位有效数字)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在△ABC中,已知AB=4,AC=6,点E为AB的中点,点D、F在边BC、AC上,且,,EF交AD于点P.(Ⅰ)若∠BAC=,求与所成角的余弦值;(Ⅱ)求的值.18.设矩形的周长为,把沿向折叠,折过去后交于,设,的面积为.(1)求的解析式及定义域;(2)求的最大值.19.如图,在三棱锥中,平面平面为等边三角形,,且,分别为的中点.(1)求证:平面平面;(2)求三棱锥的体积.20.在△ABC中,角A,B,C的对边分别为a,b,c,且a2+c2﹣b2=mac,其中m∈R.(1)若m=1,a=1,c=,求△ABC的面积;(2)若m=,A=2B,a=,求b.21.(1)计算:;(2)化简:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据余弦函数的值域,确定出的最大值和最小值,即可计算出的值.【详解】因为的值域为,所以的最大值,所以的最小值,所以.故选:C.【点睛】本题考查余弦型函数的最值问题,难度较易.求解形如的函数的值域,注意借助余弦函数的有界性进行分析.2、D【解析】
由余弦定理得,解得(舍去),故选D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!3、C【解析】
利用倒数法构造等差数列,求解通项公式后即可求解某一项的值.【详解】∵,∴,即,数列是首项为,公差为2的等差数列,∴,即,∴.故选C.【点睛】对于形如,可将其转化为的等差数列形式,然后根据等差数列去计算.4、B【解析】
由重心分中线为,可得,又(其中是中点),再由向量的加减法运算可得.【详解】设是中点,则,又为的重心,∴.故选B.【点睛】本题考查向量的线性运算,解题关键是掌握三角形重心的性质,即重心分中线为两段.5、A【解析】
根据表中数据计算,再代入线性回归方程求得,进而根据平均数的定义求出所求的数据.【详解】根据表中数据,可得,代入线性回归方程中,求得,则表中模糊不清的数据是,故选:B.【点睛】本题考查了线性回归方程过样本中心点的应用问题,是基础题.6、B【解析】
根据题意可知,函数和在上的图象有个不同的交点,作出两函数图象,即可数形结合求出.【详解】作出两函数的图象,如图所示:由图可知,函数和在上的图象有个不同的交点,故函数和在上的图象有个不同的交点,才可以满足题意.所以,圆心到直线的距离为,解得,因为两点连线斜率为,所以,.故选:B.【点睛】本题主要考查了分段函数的图象应用,函数性质的应用,函数的零点个数与两函数图象之间的交点个数关系的应用,意在考查学生的转化能力和数形结合能力,属于中档题.7、A【解析】
根据分层抽样的定义建立比例关系即可得到结论。【详解】由图1得样本容量为,抽取的初中生人数为人,则初中生近视人数为人,故选.【点睛】本题主要考查分层抽样的应用。8、A【解析】
利用等体法即可求解.【详解】三棱锥的体积等于三棱锥的体积,因此,三棱锥的体积为,故选:A.【点睛】本题考查了等体法求三棱锥的体积、三棱锥的体积公式,考查了转化与化归思想的应用,属于基础题.9、D【解析】
求出函数,令,,根据不等式求解,即可得到可能的取值.【详解】由题:,其中,令,,若函数在区间内有零点,则有解,解得:当当当结合四个选项可以分析,实数的取值可能是.故选:D【点睛】此题考查根据函数零点求参数的取值范围,需要熟练掌握三角函数的图像性质,求出函数零点再讨论其所在区间列不等式求解.10、B【解析】
根据两角和的余弦公式,得到原式,即可求解,得到答案.【详解】由两角和的余弦公式,可得,故选B.【点睛】本题主要考查了两角和的余弦公式的化简求值,其中解答中熟记两角和的余弦公式是解答的关键,着重考查了运算与求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用同角三角函数的基本关系得,再根据角度关系,利用诱导公式即可得答案.【详解】∵且,∴;∵,∴.故答案为:.【点睛】本题考查同角三角函数的基本关系、诱导公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号问题.12、【解析】
有已知条件可得出,时,与题中的递推关系式相减即可得出,且当时也成立。【详解】数列是正项数列,且所以,即时两式相减得,所以()当时,适合上式,所以【点睛】本题考差有递推关系式求数列的通项公式,属于一般题。13、②③④【解析】
①利用反例证明命题错误;②先判断为其中一条对称轴;③通过恒等变换化成;④对两个解析式进行变形,得到定义域和对应关系均一样.【详解】对①,当,显然,但,所以,不符合增函数的定义,故①错;对②,当时,,所以为的一条对称轴,当取,取时,显然两个数关于直线对称,所以,即成立,故②对;对③,,,故③对;对④,因为,,两个函数的定义域都是,解析式均为,所以函数图象相同,故④对.综上所述,故填:②③④.【点睛】本题对三角函数的定义域、值域、单调性、对称性、周期性等知识进行综合考查,求解过程中要注意数形结合思想的应用.14、或【解析】
求出圆的圆心与半径分别为:,,分别设出直线斜率存在与不存在情况下的直线方程,利用点到直线的距离等于半径即可得到答案.【详解】由圆的一般方程得到圆的圆心和半径分别为;,;(1)当过点的切线斜率不存在时,切线方程为:,此时圆心到直线的距离,故不与圆相切,不满足题意;(2)当过点的切线的斜率存在时,设切线方程为:,即为;由于直线与圆相切,所以圆心到切线的距离等于半径,即,解得:或,所以切线的方程为或;综述所述:切线的方程或【点睛】本题考查过圆外一点求圆的切线方程,解题关键是设出切线方程,利用圆心到切线的距离等于半径得到关系式,属于中档题.15、【解析】因为,所以,所以,所以,则.16、3.1【解析】
根据已知条件求出满足条件的正方形的面积,及到顶点的距离不大于1的区域(图中阴影区域)的面积比值等于频率即可求出答案.【详解】依题意得,正方形的面积,阴影部分的面积,故落在到正方形的顶点的距离不大于1的区域内(图中阴影区域)的概率,随机投10000粒豆子,其中1968粒豆子落在到正方形的顶点的距离不大于1的区域内(图中阴影区域)的频率为:,即有:,解得:,故答案为3.1.【点睛】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件的基本事件对应的“几何度量”(A),再求出总的基本事件对应的“几何度量”,最后根据求解.利用频率约等于概率,即可求解。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)以AC所在直线为x轴,过B且垂直于AC的直线于AC的直线为y轴建系,得到,,,,再由向量数量积的坐标表示,即可得出结果;(Ⅱ)先由A、P、D三点共线,得到,再由平面向量的基本定理,列出方程组,即可求出结果.【详解】(Ⅰ)以AC所在直线为x轴,过B且垂直于AC的直线于AC的直线为y轴建系如图,则,,,,∴,∴(Ⅱ)∵A、P、D三点共线,可设同理,可设由平面向量基本定理可得,解得∴,.【点睛】本题主要考查平面向量的夹角运算,以及平面向量的应用,熟记向量的数量积运算,以及平面向量基本定理即可,属于常考题型.18、(1)(2)的最大值为.【解析】
(1)利用周长,可以求出的长,利用平面几何的知识可得,再利用勾股定理,可以求出的值,由矩形的周长为,可求出的取值范围,最后利用三角形面积公式求出的解析式;(2)化简(1)的解析式,利用基本不等式,可以求出的最大值.【详解】(1)如下图所示:∵设,则,又,即,∴,得,∵,∴,∴的面积.(2)由(1)可得,,当且仅当,即时取等号,∴的最大值为,此时.【点睛】本题考查了求函数解析式,考查了基本不等式,考查了数学运算能力.19、(1)证明见详解;(2).【解析】
(1)由面面垂直可得线面垂直,再推证面面垂直即可;(2)根据垂直于平面AMO,即可由棱锥的体积公式直接求得体积.【详解】(1)在中,因为,且O为AB中点,故AB,因为平面VAB平面ABC,且平面VAB平面ABC,因为CO平面ABC,又AB,故CO平面VAB;又CO平面MOC,故平面MOC平面VAB.即证.(2)由(1)可知CO平面VAB,故三棱锥底面MAO上的高为,又因为分别为的中点,故故.故三棱锥的体积为.【点睛】本题考查由线面垂直推证面面垂直,以及三棱锥体积的求解,属基础题.20、(1);(2)【解析】
(1)当时,由余弦定理可求,利用同角三角函数基本关系式可求的值,根据三角形的面积公式即可求解.(2)当时,由余弦定理可求,利用同角三角函数基本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国银行唐山分支笔试及答案
- 合规自动化审计技术
- 自然语言处理在金融领域的应用
- 公共卫生医师职业能力评定方法试题冲刺卷
- 2026年暖通工程师资格认证考试内容试题及答案
- 校团委干事考核制度
- 医德医风考核制度
- 项目部目标考核制度
- 1 X证书考核制度
- 运输业安全考核制度
- 企业英文培训课件
- 土方回填安全文明施工管理措施方案
- 危废处置项目竣工验收规范
- 北京市东城区2025-2026学年高三上学期期末考试地理试卷
- 中国昭通中药材国际中心项目可行性研究报告
- 幽门螺杆菌对甲硝唑耐药的分子机制
- 2025年安徽历年单招试题及答案
- 专家咨询委员会建立方案
- 2025高考新高考II卷英语口语真题试卷+解析及答案
- 国家中医药管理局《中医药事业发展“十五五”规划》全文
- 颂钵疗愈师培训
评论
0/150
提交评论