2026届湖北省武汉市达标名校数学高一下期末检测模拟试题含解析_第1页
2026届湖北省武汉市达标名校数学高一下期末检测模拟试题含解析_第2页
2026届湖北省武汉市达标名校数学高一下期末检测模拟试题含解析_第3页
2026届湖北省武汉市达标名校数学高一下期末检测模拟试题含解析_第4页
2026届湖北省武汉市达标名校数学高一下期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届湖北省武汉市达标名校数学高一下期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.(2018年天津卷文)设变量x,y满足约束条件则目标函数的最大值为A.6 B.19 C.21 D.452.在等差数列中,若,则的值为()A.15 B.21 C.24 D.183.已知点到直线的距离为1,则的值为()A. B. C. D.4.如图所示,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A. B. C. D.5.不等式4xA.-∞,-12C.-∞,-326.某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距抽取样本,将全体会员随机按1~200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第5组抽出的号码为22,则第1组至第3组抽出的号码依次是()A.3,8,13 B.2,7,12 C.3,9,15 D.2,6,127.执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()A.k>4? B.k>5? C.k>6? D.k>7?8.为了得到函数y=sin(2x+)的图象,只需将函数y=sin2x图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度9.函数图象的一条对称轴在内,则满足此条件的一个值为()A. B. C. D.10.一个多面体的三视图如图所示.设在其直观图中,M为AB的中点,则几何体的体积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调递增区间为______.12.等差数列中,,则其前12项之和的值为______13.已知的圆心角所对的弧长等于,则该圆的半径为______.14.记等差数列的前项和为,若,则________.15.甲船在岛的正南处,,甲船以每小时的速度向正北方向航行,同时乙船自出发以每小时的速度向北偏东的方向驶去,甲、乙两船相距最近的距离是_____.16.若角的终边经过点,则的值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线l经过点.(1)若直线在两坐标轴上的截距相等,求直线的方程;(2)若,两点到直线的距离相等,求直线的方程.18.已知向量,,且(1)求·及;(2)若,求的最小值19.某城市理论预测2020年到2024年人口总数与年份的关系如下表所示:年份202x(年)01234人口数y(十万)5781119(1)请在右面的坐标系中画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(3)据此估计2026届该城市人口总数.(参考公式:,)20.在平面直角坐标系中,为坐标原点,,,三点满足.(1)求值;(2)已知若的最小值为,求的最大值.21.已知圆经过两点,且圆心在轴上.(1)求圆的方程;(2)若直线,且截轴所得纵截距为5,求直线截圆所得线段的长度.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.2、D【解析】

利用等差数列的性质,将等式全部化为的形式,再计算。【详解】因为,且,则,所以.故选D【点睛】本题考查等差数列的性质,属于基础题。3、D【解析】

根据点到直线的距离公式列式求解参数即可.【详解】由题,,因为,故.故选:D【点睛】本题主要考查了点到线的距离公式求参数的问题,属于基础题.4、A【解析】

根据题意,分析可得,由三角形面积公式计算可得△DEF和△ACF的面积,进而可得△ABC的面积,由几何概型公式计算可得答案.【详解】根据题意,为等边三角形,则,则,中,,其面积,中,,,其面积,则的面积,故在大等边三角形中随机取一点,则此点取自小等边三角形的概率,故选:A.【点睛】本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.5、B【解析】

因式分解不等式,可直接求得其解集。【详解】∵4x2-4x-3≤0,∴【点睛】本题考查求不等式解集,属于基础题。6、B【解析】

根据系统抽样原理求出抽样间距,再根据第5组抽出的号码求出第1组抽出的号码,即可得出第2组、第3组抽取的号码.【详解】根据系统抽样原理知,抽样间距为200÷40=5,

当第5组抽出的号码为22时,即22=4×5+2,

所以第1组至第3组抽出的号码依次是2,7,1.

故选:B.【点睛】本题考查了系统抽样方法的应用问题,是基础题.7、B【解析】

分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S的值,条件框内的语句决定是否结束循环,模拟执行程序即可得到结果.【详解】程序在运行过程中各变量值变化如下:第一次循环k=2,S=2;是第二次循环k=3,S=7;是第三次循环k=4,S=18;是第四次循环k=5,S=41;是第五次循环=6,S=88;否故退出循环的条件应为k>5?,故选B.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8、A【解析】

由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【详解】∵,故要得到的图象,只需将函数y=sin2x,x∈R的图象向左平移个单位长度即可,故选:A.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.9、A【解析】

求出函数的对称轴方程,使得满足在内,解不等式即可求出满足此条件的一个φ值.【详解】解:函数图象的对称轴方程为:xk∈Z,函数图象的一条对称轴在内,所以当k=0时,φ故选A.【点睛】本题是基础题,考查三角函数的基本性质,不等式的解法,考查计算能力,能够充分利用基本函数的性质解题是学好数学的前提.10、D【解析】

利用棱柱的体积减去两个棱锥的体积,求解即可.【详解】由题意可知几何体C−MEF的体积:VADF−BCE−VF−AMCD−VE−MBC=.故选:D.【点睛】本题考查简单空间图形的三视图及体积计算,根据三视图求得几何体的棱长及关系,利用几何体体积公式即可求解,考查运算能力和空间想象能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

令,解得的范围即为所求的单调区间.【详解】令,,解得:,的单调递增区间为故答案为:【点睛】本题考查正弦型函数单调区间的求解问题,关键是能够采用整体对应的方式,结合正弦函数的单调区间来进行求解.12、【解析】

利用等差数列的通项公式、前n项和公式直接求解.【详解】∵等差数列{an}中,a3+a10=25,∴其前12项之和S126(a3+a10)=6×25=1.故答案为:1.【点睛】本题考查等差数列的前n项和的公式,考查等差数列的性质的应用,考查运算求解能力,是基础题.13、【解析】

先将角度化为弧度,再根据弧长公式求解.【详解】解:圆心角,弧长为,,即该圆的半径长.故答案为:.【点睛】本题考查了角度和弧度的互化以及弧长公式的应用问题,属于基础题.14、10【解析】

由等差数列求和的性质可得,求得,再利用性质可得结果.【详解】因为,所以,所以,故故答案为10【点睛】本题考查了等差数列的性质,熟悉其性质是解题的关键,属于基础题.15、【解析】

根据条件画出示意图,在三角形中利用余弦定理求解相距的距离,利用二次函数对称轴及可求解出最值.【详解】假设经过小时两船相距最近,甲、乙分别行至,,如图所示,可知,,,.当小时时甲、乙两船相距最近,最近距离为.【点睛】本题考查解三角形的实际应用,难度较易.关键是通过题意将示意图画出来,然后将待求量用未知数表示,最后利用函数思想求最值.16、.【解析】

根据三角函数的定义求出的值,然后利用反三角函数的定义得出的值.【详解】由三角函数的定义可得,,故答案为.【点睛】本题考查三角函数的定义以及反三角函数的定义,解本题的关键就是利用三角函数的定义求出的值,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(2)或(2)或【解析】

(2)讨论直线是否过原点,利用截距相等进行求解即可.(2)根据点到直线的距离相等,分直线平行和直线过A,B的中点两种情况进行求解即可.【详解】(2)若直线过原点,则设为y=kx,则k=2,此时直线方程为y=2x,当直线不过原点,设方程为2,即x+y=a,此时a=2+2=2,则方程为x+y=2,综上直线方程为y=2x或x+y=2.(2)若A,B两点在直线l同侧,则AB∥l,AB的斜率k2,即l的斜率为2,则l的方程为y﹣2=x﹣2,即y=x+2,若A,B两点在直线的两侧,即l过A,B的中点C(2,0),则k2,则l的方程为y﹣0=﹣2(x﹣2),即y=﹣2x+4,综上l的方程为y=﹣2x+4或y=x+2.【点睛】本题主要考查直线方程的求解,结合直线截距相等以及点到直线距离相等,进行分类讨论是解决本题的关键.18、(1)见解析;(2).【解析】

(1)运用向量数量积的坐标表示,求出·;运用平面向量的坐标运算公式求出,然后求出模.(2)根据上(1)求出函数的解析式,配方,利用二次函数的性质求出最小值.【详解】(1)∵∴∴(2)∵∴∴【点睛】本题考查了平面向量数量积的坐标表示,以及平面向量的坐标加法运算公式.重点是二次函数求最小值问题.19、(1)见解析;(2);(3)2026届该城市人口总数为196万人【解析】

(1)由表中数据描点即可;(2)由最小二乘法的公式得出的值,即可得出该线性方程;(3)将代入(2)中的线性方程,即可得出2026届该城市人口总数.【详解】(1)画出散点图如图所示.(2),,,,,,则线性回归方程.(3)时,(十万)(万).答:估计2026届该城市人口总数为196万人【点睛】本题主要考查了绘制散点图,求回归直线方程以及根据回归方程进行数据估计,属于中档题.20、(1)(2)1【解析】

(1)由,得,化简得,即可得到答案;(2)化简函数,对实数分类讨论求得函数的最小值,得到关于的分段函数,进而求得函数的最大值.【详解】(1)由题意知三点满足,可得,所以,即即,则,所以.(2)由题意,函数因为,所以,当时,取得最小值,当时,当时,取得最小值,当时,当时,取得最小值,综上所述,,可得函数的最大值为1,即的最大值为1.【点睛】本题主要考查了向量的线性运算,向量的数量积的坐标性质,以及三角函数和二次函数的性质的综合应用,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.21、(1)(2)【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论