高三数学一轮复习重点知识点总结_第1页
高三数学一轮复习重点知识点总结_第2页
高三数学一轮复习重点知识点总结_第3页
高三数学一轮复习重点知识点总结_第4页
高三数学一轮复习重点知识点总结_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高三数学一轮复习重点知识点总结高三数学一轮复习是整个高考备考阶段的基石,其核心目标在于系统梳理高中数学知识体系,夯实基础,构建知识网络,提升基本技能与数学思想方法的运用能力。此阶段的复习质量直接关系到后续二轮专题突破与三轮模拟冲刺的效果。因此,明确复习重点,掌握科学方法至关重要。一、函数与导数函数是贯穿高中数学的主线,导数是研究函数性质的强大工具,二者结合是高考的重中之重。1.函数的概念与表示:深刻理解函数的定义域、值域、对应法则三要素。掌握函数的表示方法,尤其是解析法和图像法。定义域的求解务必全面,考虑分式、偶次根式、对数式、零次幂等限制条件。2.函数的基本性质:*单调性:定义法证明(取值、作差/作商、变形、定号、结论),复合函数单调性的判断(同增异减)。单调性是求最值、解不等式、比较大小的重要依据。*奇偶性:定义判断,图像特征(奇函数关于原点对称,偶函数关于y轴对称)。注意定义域关于原点对称是函数具有奇偶性的前提。*周期性:理解周期函数的定义,掌握常见周期函数的周期。*最值与值域:掌握求值域的常用方法(配方法、换元法、判别式法、不等式法、单调性法、导数法等)。3.基本初等函数:*一次函数与二次函数:二次函数是核心,掌握其图像(开口方向、对称轴、顶点)、性质及在闭区间上的最值问题。注意含参数的二次函数分类讨论。*指数函数与对数函数:理解其定义、图像和性质(单调性、过定点)。掌握指数、对数的运算性质。明确指数函数与对数函数互为反函数。*幂函数:了解常见幂函数(y=x,y=x²,y=x³,y=x^(-1),y=x^(1/2))的图像和性质。4.函数的图像:掌握作图(描点法、利用基本初等函数变换)、识图(从图像获取定义域、值域、单调性、奇偶性等信息)、用图(解决方程、不等式问题)的能力。5.函数与方程:理解函数零点的概念,掌握零点存在性定理。会利用函数图像判断方程根的个数。6.导数及其应用:*导数的概念与几何意义:理解导数的定义(瞬时变化率),明确导数的几何意义是曲线在该点处的切线斜率。*基本求导公式与运算法则:熟练掌握常见函数的导数公式,四则运算法则,复合函数求导法则(链式法则)。*导数的应用:利用导数判断函数的单调性、求函数的极值与最值;利用导数解决不等式证明、恒成立问题、方程解的个数问题等。注意定义域优先原则,以及极值点与导数零点的关系。二、三角函数与解三角形三角函数是描述周期现象的重要数学模型,解三角形则是其在实际问题中的应用。1.三角函数的概念:任意角的三角函数定义(终边定义法),三角函数线。2.同角三角函数基本关系:平方关系与商数关系,用于化简、求值、证明。3.诱导公式:奇变偶不变,符号看象限,用于将任意角的三角函数转化为锐角三角函数。4.三角函数的图像与性质:正弦、余弦、正切函数的图像(五点法作图)、定义域、值域、周期性、奇偶性、单调性、最值、对称轴、对称中心。5.三角恒等变换:两角和与差的正弦、余弦、正切公式,二倍角公式,辅助角公式(合一变形)。能运用这些公式进行化简、求值、证明。6.解三角形:正弦定理、余弦定理及其应用。能解决已知三边、两边一角、两角一边等类型的三角形求解问题,以及与三角形面积相关的问题。注意解的个数判断。三、数列数列是一种特殊的函数,是反映自然规律的基本数学模型。1.数列的概念与表示:数列的定义,通项公式,递推公式。能根据数列的前几项归纳通项公式,能根据递推关系求出数列的项。2.等差数列:定义(从第二项起,每一项与前一项的差为常数),通项公式,前n项和公式。掌握等差数列的性质(如m+n=p+q则a_m+a_n=a_p+a_q)。3.等比数列:定义(从第二项起,每一项与前一项的比为常数),通项公式,前n项和公式(注意公比q=1和q≠1的讨论)。掌握等比数列的性质(如m+n=p+q则a_m*a_n=a_p*a_q)。4.数列求和:掌握常用的求和方法:公式法(等差、等比)、错位相减法(适用于等差乘等比型)、裂项相消法(适用于分式型,如1/n(n+1))、分组求和法、倒序相加法。5.数列的综合应用:与函数、不等式结合,解决与数列相关的最值问题、不等式证明问题。四、立体几何立体几何着重考查空间想象能力、逻辑推理能力和运算求解能力。1.空间几何体:认识柱、锥、台、球及其简单组合体的结构特征。能画出简单空间图形的三视图和直观图。2.空间几何体的表面积与体积:掌握柱体、锥体、台体、球的表面积和体积公式,并能进行计算。3.空间点、直线、平面之间的位置关系:*四个公理、三个推论,等角定理。*直线与直线的位置关系(平行、相交、异面),异面直线所成角。*直线与平面的位置关系(平行、相交、在平面内),线面平行的判定与性质,线面垂直的判定与性质,直线与平面所成角。*平面与平面的位置关系(平行、相交),面面平行的判定与性质,面面垂直的判定与性质,二面角及其平面角。4.空间向量与立体几何(理科):理解空间向量的概念,掌握空间向量的线性运算、数量积。能用向量方法证明线面平行、线面垂直,计算空间角(线线角、线面角、二面角)和距离。五、解析几何解析几何是用代数方法研究几何问题,体现了数形结合的重要思想。1.直线与方程:直线的倾斜角与斜率,直线方程的几种形式(点斜式、斜截式、两点式、截距式、一般式)。两条直线的位置关系(平行、垂直)的判定及距离公式。2.圆与方程:圆的标准方程与一般方程。点与圆、直线与圆、圆与圆的位置关系及其判定方法。3.圆锥曲线:*椭圆:定义(第一定义、第二定义),标准方程,几何性质(范围、对称性、顶点、焦点、离心率)。*双曲线:定义(第一定义、第二定义),标准方程,几何性质(范围、对称性、顶点、焦点、离心率、渐近线)。*抛物线:定义,标准方程,几何性质(范围、对称性、顶点、焦点、准线、离心率)。4.直线与圆锥曲线的位置关系:联立方程,利用判别式、韦达定理解决相交、相切、相离问题,以及弦长、中点弦、定点定值等问题。注意“设而不求”思想的应用。5.曲线与方程:了解曲线与方程的对应关系,会求简单的曲线方程。六、概率与统计概率统计主要研究随机现象及其规律性,具有广泛的应用性。1.随机事件的概率:随机事件的概念,频率与概率的关系,互斥事件与对立事件,概率的基本性质(加法公式)。2.古典概型与几何概型:古典概型的特征及概率计算公式,几何概型的特征及概率计算公式。3.概率的基本公式:相互独立事件的概率乘法公式,n次独立重复试验与二项分布(理科)。4.随机变量及其分布(理科):随机变量的概念,离散型随机变量的分布列及其性质,数学期望与方差。常见离散型随机变量的分布(两点分布、二项分布、超几何分布)。5.统计:随机抽样(简单随机抽样、系统抽样、分层抽样)。用样本估计总体:频率分布表与频率分布直方图,茎叶图,众数、中位数、平均数、方差、标准差。变量间的相关关系:线性回归方程。独立性检验(2x2列联表)。七、不等式不等式是解决数学问题的重要工具。1.不等式的性质:掌握不等式的基本性质,能利用性质比较大小、证明简单不等式。2.一元二次不等式:一元二次不等式的解法,结合二次函数图像理解解集。3.基本不等式:a+b≥2√(ab)(a,b>0),掌握其变形及应用条件(一正二定三相等),用于求最值和证明不等式。4.简单的线性规划:会从实际问题中抽象出二元一次不等式组,能画出可行域,利用目标函数的几何意义求最值。八、复数(理科)复数的概念,复数的代数形式及其运算(加法、减法、乘法、除法),复数的几何意义。九、算法初步算法的概念,程序框图的三种基本逻辑结构(顺序结构、条件结构、循环结构),基本算法语句。复习建议与方法1.回归教材,夯实基础:一轮复习的首要任务是将教材上的基本概念、公式、定理、例题、习题吃透,不留死角。2.构建知识网络:用思维导图等方式将零散的知识点串联起来,形成系统,理解知识间的内在联系。3.重视错题整理:建立错题本,分析错误原因(概念不清、计算失误、思路偏差等),定期回顾,避免重复犯错。4.强化规范训练:解题过程要规范,步骤要完整,养成良好书写习惯,减少非智力因素失分。5.注重数学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论