2026届湖北省武汉市新洲区数学高一下期末质量跟踪监视试题含解析_第1页
2026届湖北省武汉市新洲区数学高一下期末质量跟踪监视试题含解析_第2页
2026届湖北省武汉市新洲区数学高一下期末质量跟踪监视试题含解析_第3页
2026届湖北省武汉市新洲区数学高一下期末质量跟踪监视试题含解析_第4页
2026届湖北省武汉市新洲区数学高一下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届湖北省武汉市新洲区数学高一下期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若线性方程组的增广矩阵是5b1102bA.1 B.2 C.3 D.42.对数列,若区间满足下列条件:①;②,则称为区间套.下列选项中,可以构成区间套的数列是()A.;B.C.D.3.若直线平分圆的周长,则的值为()A.-1 B.1 C.3 D.54.若将函数的图象向右平移个单位后,所得图象对应的函数为()A. B. C. D.5.已知中,,,,则BC边上的中线AM的长度为()A. B. C. D.6.在中秋的促销活动中,某商场对9月14日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知12时到14时的销售额为万元,则10时到11时的销售额为()A.万元 B.万元 C.万元 D.万元7.某程序框图如图所示,若输出的结果为,则判断框内应填入的条件可以为()A. B. C. D.8.在中,,且面积为1,则下列结论不正确的是()A. B. C. D.9.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度10.设,表示两条直线,,表示两个平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知是等比数列,且,,那么________________.12.数列的通项,前项和为,则____________.13.已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.14.已知向量、满足||=2,且与的夹角等于,则||的最大值为_____.15.若两个向量与的夹角为,则称向量“”为向量的“外积”,其长度为.若已知,,,则.16.已知,若对任意,均有,则的最小值为______;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆C过点,圆心在直线上.(1)求圆C的方程;(2)过圆O1:上任一点P作圆C的两条切线,切点分别为Q,T,求四边形PQCT面积的取值范围.18.在锐角中,角,,所对的边分别为,,,且.(1)求;(2)若的面积为8,,求的值.19.已知函数的最小正周期为,且该函数图象上的最低点的纵坐标为.(1)求函数的解析式;(2)求函数的单调递增区间及对称轴方程.20.已知为等差数列,且(Ⅰ)求数列的通项公式;(Ⅱ)记的前项和为,若成等比数列,求正整数的值.21.已知方程有两个实根,记,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由题意得5×3421+【详解】由题意得5×3421+解得b1则b2【点睛】本题主要考查了线性方程组的解法,以及增广矩阵的概念,考查运算能力,属于中档题.2、C【解析】由题意,得为递增数列,为递减数列,且当时,;而与与均为递减数列,所以排除A,B,D,故选C.考点:新定义题目.3、D【解析】

求出圆的圆心坐标,由直线经过圆心代入解得.【详解】解:所以的圆心为因为直线平分圆的周长所以直线过圆心,即解得,故选:D.【点睛】本题考查直线与圆的位置关系的综合应用,属于基础题.4、B【解析】

根据正弦型函数的图象平移规律计算即可.【详解】.故选:B.【点睛】本题考查三角函数图象的平移变化,考查对基本知识的理解和掌握,属于基础题.5、A【解析】

利用平行四边形对角线的平方和等于四条边的平方和,求的长.【详解】延长至,使,连接、,如图所示;由题意知四边形是平行四边形,且满足,即,解得,所以边上的中线的长度为.故选:A.【点睛】本题考查平行四边形对角线的平方和等于四条边的平方和应用问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.6、C【解析】分析:先根据12时到14时的销售额为万元求出总的销售额,再求10时到11时的销售额.详解:设总的销售额为x,则.10时到11时的销售额的频率为1-0.1-0.4-0.25-0.1=0.15.所以10时到11时的销售额为.故答案为C.点睛:(1)本题主要考查频率分布直方图求概率、频数和总数,意在考查学生对这些基础知识的掌握水平.(2)在频率分布直方图中,所有小矩形的面积和为1,频率=.7、D【解析】

由已知可得,该程序是利用循环结构计算输出变量S的值,模拟过程分别求出变量的变化情况可的结果.【详解】程序在运行过程中,判断框前的变量的值如下:k=1,S=1;k=2,S=4;k=3,S=11,k=4,S=26;此时应该结束循环体,并输出S的值为26,所以判断框应该填入条件为:故选D【点睛】本题主要考查了程序框图,属于基础题.8、C【解析】

根据三角形面积公式列式,求得,再根据基本不等式判断出C选项错误.【详解】根据三角形面积为得,三个式子相乘,得到,由于,所以.所以,故C选项错误.所以本小题选C.【点睛】本小题主要考查三角形面积公式,考查基本不等式的运用,属于中档题.9、D【解析】

试题分析:将函数的图象向右平移,可得,故选D.考点:图象的平移.10、D【解析】

对选项进行一一判断,选项D为面面垂直判定定理.【详解】对A,与可能异面,故A错;对B,可能在平面内;对C,与平面可能平行,故C错;对D,面面垂直判定定理,故选D.【点睛】本题考查空间中线、面位置关系,判断一个命题为假命题,只要能举出反例即可.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先根据等比数列性质化简方程,再根据平方性质得结果.【详解】∵是等比数列,且,,∴,即,则.【点睛】本题考查等比数列性质,考查基本求解能力.12、7【解析】

根据数列的通项公式,求得数列的周期为4,利用规律计算,即可求解.【详解】由题意,数列的通项,可得,,得到数列是以4项为周期的形式,所以=.故答案为:7.【点睛】本题主要考查了数列的求和问题,其中解答中根据数列的通项公式求得数列的周期,以及各项的变化规律是解答的关键,属于基础题,着重考查了.13、4【解析】

由题,根据垂径定理求得圆心到直线的距离,可得m的值,既而求得CD的长可得答案.【详解】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.故答案为4【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.14、【解析】

在中,令,可得,可得点在半径为的圆上,,可得,进而可得的最大值.【详解】∵向量、满足||=1,且与的夹角等于,如图在中,令,,可得可得点B在半径为R的圆上,1R4,R=1.则||的最大值为1R=4【点睛】本题考查了向量的夹角、模的运算,属于中档题.15、3【解析】

故答案为3.【点评】本题主要考查以向量的数量积为载体考查新定义,利用向量的数量积转化是解决本题的关键,16、【解析】

根据对任意,均有,分析得到,再根据正弦型函数的最值公式求解出的最小值.【详解】因为对任意,均有,所以,所以,所以,所以.故答案为:.【点睛】本题考查正弦型函数的应用,难度一般.正弦型函数的最值一定是在对称轴的位置取到,因此正弦型函数取最大值与最小值时对应的自变量的差的绝对值最小为,此时最大值与最小值对应的对称轴相邻.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2).【解析】分析:(1)根据条件设圆的方程为,由题意可解得,于是可求得圆的方程.(2)根据几何知识可得,故将所求范围的问题转化为求切线长的问题,然后根据切线长的求法可得结论.详解:(1)由题意设圆心为,半径为,则圆的标准方程为.由题意得,解得,所以圆的标准方程为.(2)由圆的切线的性质得,而.由几何知识可得,又,所以,故,所以,即四边形面积的取值范围为.点睛:解决圆的有关问题时经常结合几何法求解,借助图形的直观性可使得问题的求解简单直观.如在本题中将四边形的面积转化为切线长的问题,然后再转化为圆外一点到圆上的点的距离的范围的问题求解.18、(1)(2)【解析】

(1)利用正弦定理,将csinA=acosC转化为,可得,从而可得角C的大小;(2)利用面积公式直接求解b即可【详解】(1)由正弦定理得,因为所以sinA>0,从而,即,又,所以;(2)由得b=8【点睛】本题考查三角函数中的恒等变换应用,考查正弦定理的应用,面积公式的应用,考查化归思想属于中档题.19、(1);(2)增区间是,对称轴为【解析】

(1)由周期求得ω,再由函数图象上的最低点的纵坐标为﹣3求得A,则函数解析式可求;(2)直接利用复合函数的单调性求函数f(x)的单调递增区间,再由2x求解x可得函数f(x)的对称轴方程.【详解】(1)因为的最小正周期为因为,,,∴.又函数图象上的最低点纵坐标为,且∴∴.(2)由,可得可得单调递增区间.由,得.所以函数的对称轴方程为.【点睛】本题考查函数解析式的求法,考查y=Asin(ωx+φ)型函数的性质,是基础题.20、:(Ⅰ)(Ⅱ)【解析】试题分析:(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得a1=1,d=1,从而得到{an}的通项公式.(Ⅱ)由(Ⅰ)可得{an}的前n项和为Sn==n(n+1),再由=a1Sk+1,求得正整数k的值.解:(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得a1=1,d=1.∴{an}的通项公式an=1+(n﹣1)1=1n.(Ⅱ)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论