版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省单县第一中学2026届高一下数学期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则()A.,且直线是相交直线B.,且直线是相交直线C.,且直线是异面直线D.,且直线是异面直线2.集合A={x|-2<x<2},B={x|-1<x<3}那么A∪B=()A.{x|-2<x<-1} B.{x|-1<x<2}C.{x|-2<x<1} D.{x|-2<x<3}3.在中,若,那么是()A.直角三角形 B.钝角三角形 C.锐角三角形 D.不能确定4.已知的三个内角所对的边分别为.若,则该三角形的形状是()A.等边三角形 B.等腰三角形 C.等腰三角形或直角三角形 D.直角三角形5.已知且,则的取值范围是()A. B. C. D.6.下列函数中,在区间上是减函数的是()A. B. C. D.7.设变量想x、y满足约束条件为则目标函数的最大值为()A.0 B.-3 C.18 D.218.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为,则第八个单音的频率为()A. B. C. D.9.函数,若方程恰有三个不同的解,记为,则的取值范围是()A. B. C. D.10.已知,则下列4个角中与角终边相同的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某空间几何体的三视图如图所示,则该几何体的体积为________12.在中,已知M是AB边所在直线上一点,满足,则________.13.已知函数,下列说法:①图像关于对称;②的最小正周期为;③在区间上单调递减;④图像关于中心对称;⑤的最小正周期为;正确的是________.14.已知数列{an}、{bn}都是公差为1的等差数列,且a1+b1=515.已知四面体的四个顶点均在球的表面上,为球的直径,,四面体的体积最大值为____16.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,是公差为的等差数列,是公比为的等比数列.且,,,.(1)分别求数列、的通项公式;(2)已知数列满足:,求数列的通项公式.18.已知圆过两点,,且圆心在直线上.(1)求圆的标准方程;(2)求过点且与圆相切的直线方程.19.已知数列为等差数列,是数列的前n项和,且,.(1)求数列的通项公式;(2)令,求数列的前n项和.20.已知,,分别为三个内角,,的对边,.(1)求角的大小;(2)若,的面积为,求边,.21.已知圆C的方程是(x-1)2+(y-1)2=4,直线l的方程为y=x+m,求当m为何值时,(1)直线平分圆;(2)直线与圆相切.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用垂直关系,再结合勾股定理进而解决问题.【详解】如图所示,作于,连接,过作于.连,平面平面.平面,平面,平面,与均为直角三角形.设正方形边长为2,易知,.,故选B.【点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角性.2、D【解析】
根据并集定义计算.【详解】由题意A∪B={x|-2<x<3}.故选D.【点睛】本题考查集合的并集运算,属于基础题.3、C【解析】
由tanAtanB>1可得A,B都是锐角,故tanA和tanB都是正数,可得tan(A+B)<0,故A+B为钝角,C为锐角,可得结论.【详解】由△ABC中,A,B,C为三个内角,若tanAtanB>1,可得A,B都是锐角,故tanA和tanB都是正数,∴tan(A+B)0,故A+B为钝角.由三角形内角和为180°可得,C为锐角,故△ABC是锐角三角形,故选C.【点睛】本题考查根据三角函数值的符号判断角所在的范围,两角和的正切公式的应用,判断A+B为钝角,是解题的关键.4、B【解析】
利用三角形的内角关系及三角变换公式得到,从而得到,此三角形的形状可判断.【详解】因为,故,整理得到,所以,因,所以即,故为等腰三角形,故选B.【点睛】本题考查两角和、差的正弦,属于基础题,注意角的范围的讨论.5、A【解析】分析:,由,可得,又,可得,化简整理即可得出.详解:,由,可得,又,可得,化为,解得,则的取值范围是.故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.6、C【解析】
根据初等函数的单调性对各个选项的函数的解析式进行逐一判断【详解】函数在单调递增,在单调递增.
在单调递减,在单调递增.故选:C【点睛】本题主要考查了基本初等函数的单调性的判断,属于基础试题.7、C【解析】
画出可行域如下图所示,由图可知,目标函数在点处取得最大值,且最大值为.故选C.【点睛】本小题主要考查利用线性规划求线性目标函数的最大值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画图可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.8、B【解析】
根据等比数列通项公式,求得第八个单音的频率.【详解】根据等比数列通项公式可知第八个单音的频率为.故选:B.【点睛】本小题主要考查等比数列的通项公式,考查中国古代数学文化,属于基础题.9、D【解析】
由方程恰有三个不同的解,作出的图象,确定,的取值范围,得到的对称性,利用数形结合进行求解即可.【详解】设
作出函数的图象如图:由
则当
时
,,
即函数的一条对称轴为
,要使方程恰有三个不同的解,则
,
此时
,
关于
对称,则
当
,即
,则
则
的取值范围是,选D.【点睛】本题主要考查了方程与函数,数学结合是解决本题的关键,数学结合也是数学中比较重要的一种思想方法.10、C【解析】
先写出与角终边相同的角的集合,再给k取值得解.【详解】由题得与角终边相同的集合为,当k=6时,.所以与角终边相同的角为.故选C【点睛】本题主要考查终边相同的角的求法,意在考查学生对该知识的理解掌握水平.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】
根据三视图还原几何体,为一个底面是直角梯形的四棱锥,根据三视图的数据,分别求出其底面积和高,求出体积,得到答案.【详解】由三视图还原几何体如图所示,几何体是一个底面是直角梯形的四棱锥,由三视图可知,其底面积为,高所以几何体的体积为.故答案为.【点睛】本题考查三视图还原几何体,求四棱锥的体积,属于简单题.12、3【解析】
由M在AB边所在直线上,则,又,然后将,都化为,即可解出答案.【详解】因为M在直线AB上,所以可设,
可得,即,又,则由与不共线,所以,解得.故答案为:3【点睛】本题考查向量的减法和向量共线的利用,属于基础题.13、②③⑤【解析】
将函数解析式改写成:,即可作出函数图象,根据图象即可判定.【详解】由题:,,所以函数为奇函数,,是该函数的周期,结合图象分析是其最小正周期,,作出函数图象:可得,该函数的最小正周期为,图像不关于对称;在区间上单调递减;图像不关于中心对称;故答案为:②③⑤【点睛】此题考查三角函数图象及其性质的辨析,涉及周期性,对称性和单调性,作为填空题,恰当地利用图象解决问题能够起到事半功倍的作用.14、1【解析】
根据等差数列的通项公式把abn转化到a1+(bn-1)【详解】S=[=[=na1=4n+n(n-1)故答案为:12【点睛】本题主要考查等差数列通项公式和前n项和的应用,利用分组求和法是解决本题的关键.15、2【解析】
为球的直径,可知与均为直角三角形,求出点到直线的距离为,可知点在球上的运动轨迹为小圆.【详解】如图所示,四面体内接于球,为球的直径,,,,过作于,,点在以为圆心,为半径的小圆上运动,当面面时,四面体的体积达到最大,.【点睛】立体几何中求最值问题,核心通过直观想象,找到几何体是如何变化的?本题求解的突破口在于找到点的运动轨迹,考查学生的空间想象能力和逻辑思维能力.16、【解析】
试题分析:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个正方形,边长是2,四棱锥的一条侧棱和底面垂直,且这条侧棱长是2,这样在所有的棱中,连接与底面垂直的侧棱的顶点与相对的底面的顶点的侧棱是最长的长度是,考点:三视图点评:本题考查由三视图还原几何体,所给的是一个典型的四棱锥,注意观察三视图,看出四棱锥的一条侧棱与底面垂直.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)根据题意分别列出关于、的方程,求出这两个量,然后分别求出数列、的首项,再利用等差数列和等比数列的通项公式可计算出数列、的通项公式;(2)令可得出的值,再令,由得出,两式相减可求出,于此得出数列的通项公式.【详解】(1)由题意得,,,解得,且,,,,,且,整理得,解得,,,由等比数列的通项公式可得;(2)由题意可知,对任意的,.当时,,;当时,由,可得,上述两式相减得,即,.不适合上式,因此,.【点睛】本题考查等差数列、等比数列通项公式的求解,以及利用作差法求数列通项,解题时要结合数列递推式的结构选择合适的方法求解,考查运算求解能力,属于中等题.18、(1)(2)【解析】
(1)设圆心坐标为,根据,求得,进而得到圆的方程;(2)由在圆上,则,得到,求得,进而求得圆的切线方程.【详解】(1)由题意,圆心在直线上,设圆心坐标为,由,即,所以,圆心,半径,圆的标准方程为.(2)设切线方程为,因为在圆上,所以,所以,又,所以,所以切线方程为,即,所以过的切线方程.【点睛】本题主要考查了圆的方程的求解,以及直线与圆的位置关系的应用,其中解答中熟记圆的方程的形式,以及圆的切线的性质是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)(2)【解析】
(1)由等差数列可得,求得,即可求得通项公式;(2)由(1),则利用裂项相消法求数列的和即可【详解】解:(1)因为数列是等差数列,且,,则,解得,所以(2)由(1),,所以【点睛】本题考查等差数列的通项公式,考查裂项相消法求数列的和20、(1);(2).【解析】
(1)利用正弦定理化边为角,再依据两角和的正弦公式以及诱导公式,即可求出,进而求得角A的大小:(2)依第一问结果,先由三角形面积公式求出,再利用余弦定理求出,联立即可求解出,的值.【详解】(1)由及正弦定理得,整理得,,,因为,且,所以,,又,所以,.(2)因为的面积,所以,①由余弦定理得,,所以,②联立①②解得,.【点睛】本题主要考查利用正余弦定理解三角形和三角形面积公式的应用,涉及利用两角和的正弦公式、诱导公式对三角函数式的恒等变换.21、(1)m=0;(2)m=±2.【解析】试题分析:(1)直线平分圆,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美容师业绩考核制度
- 钢铁生产企业考核制度
- 收费员绩效考核制度
- 4s店内勤考核制度
- 商场保安员考核制度
- 社区楼栋长考核制度
- 金交所绩效考核制度
- 支教志愿者考核制度
- 病媒生物防制考核制度
- 试点监测评估考核制度
- Web3创作者经济演进研究
- 探秘黄河-中国的河流(第三课时)设计
- 2026年ESG专项知识考试题目
- 《二氧化碳转化原理与技术》课件 第9章 二氧化碳电催化转化
- 经济学基础 第5版 自测试卷B及答案
- 2025新疆中考物化试卷及答案
- 【生物 四川卷】2025年四川省高考招生统一考试真题生物试卷(真题+答案)
- 2025春湘美版(2024)美术初中七年级下册第三单元 形色协奏曲《第2课 色彩的交响》教学设计
- 石油钻探设备吊装方案
- 职业技术学院校园环境改善施工组织设计方案
- 公司往来款合同模板
评论
0/150
提交评论